Jerry is recognized for distinguished research on the genetic basis of tree growth and development, including leading the international efforts to sequence, assemble, and annotate the genomes of poplar and eucalyptus bioenergy feedstocks.
For far-reaching accomplishments on national security issues relating to nuclear weapons proliferation, security of nuclear materials, and counterterrorism.
For experimental studies in atomic and molecular physics, particularly developments in the field of nonlinear laser spectroscopy and the physics of negative ions
Mook has conducted neutron scattering research on a broad spectrum of materials. He is best known for his pioneering research on the magnetic excitations of transition metal ferromagnets and the observation of itinerant electron effects in these materials.
For his internationally recognized work in the theory of alloys and his pioneering applications of massively parallel computing to first-principles calculations of the properties of materials.
For innovative and fundamental contributions to the understanding of the interactions and transport of electrons in gases and liquids, negative ion processes, the interfacing of the gaseous and condensed phases of matter, and the use of fundamental knowledge in the development of gaseous dielectrics, radiation detectors, and pulsed power
For fundamental studies in radiation physics, radiation dosimetry, and surface physics and for pioneering theoretical work on collective electron modes, surface electromagnetic waves in solids, and elucidation of the interaction of charged particles with matter.