For environmental-effects research related to energy technologies and their use, focusing on the impacts of climate and atmospheric changes on the physiology, growth, and biogeochemical cycles of North American forest ecosystems.
For pioneering research and development of new materials for advanced energy technologies, including materials for (a) the storage of nuclear waste, (b) the solid-state generation of electrical power directly from heat, and (c) the lossless transport of electricity.
For significant and fundamental achievements in laser-based chemical measurement techniques, such as single molecule detection in liquids, and pioneering the efforts in the development of microfabricated chemical instrumentation, including the laboratory on a chip concept.
Greenbaum, the winner of the 1995 DOE Biological and Chemical Technologies Research Award, has done extensive experimental work in photosynthesis, the process by which green plants grow, and its application to renewable energy production.
For distinguished research in the field of risk assessment, including pharmacokinetic and pharmacodynamic models, interspecies extrapolation, and human exposure to dioxin and other background contaminants, and for significant contributions to environmental policy through pioneering investigations of the effectiveness of remediation technologies and through service on national and international advisory panels and boards
For advances in neutron and gamma-ray dosimetry, the transport of electricity through gases, and the development of laser-based one-atom detection with applications in nuclear physics, solar neutrino research, and oceanic, geologic, and environmental research