Skip to main content

News

A pure lipid membrane formed using lipid-coated water droplets exhibits long-term potentiation, or LTP, associated with learning and memory, emulating hippocampal LTP observed in the brains of mammals and birds. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

While studying how bio-inspired materials might inform the design of next-generation computers, scientists at ORNL achieved a first-of-its-kind result that could have big implications for both edge computing and human health.

New manufacturing process produces better, cheaper cathodes for lithium-ion batteries

Researchers at ORNL have developed a new method for producing a key component of lithium-ion batteries. The result is a more affordable battery from a faster, less wasteful process that uses less toxic material.

Jack Cahill of ORNL’s Biosciences Division is developing new techniques to view and measure the previously unseen to better understand important chemical processes at play in plant-microbe interactions and in human health. In this photo, Cahill is positioning a rhizosphere-on-a-chip platform for imaging by mass spectrometry. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

John “Jack” Cahill is out to illuminate previously unseen processes with new technology, advancing our understanding of how chemicals interact to influence complex systems whether it’s in the human body or in the world beneath our feet.

A team led by Raymond Borges Hink has developed a method using blockchain to protect communications between electronic devices in the electric grid, preventing cyberattacks and cascading blackouts. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Although blockchain is best known for securing digital currency payments, researchers at the Department of Energy’s Oak Ridge National Laboratory are using it to track a different kind of exchange: It’s the first time blockchain has ever been used to validate communication among devices on the electric grid.

ORNL inventors and Safire Technology Group leadership attended a licensing event at the lab on Nov. 15. Standing, from left to right, are Katie Browning, Mike Grubbs, Gabriel Veith, Hayley Kleciak, Beth Armstrong, Sergiy Kalnaus and Kevin Cooley. Seated are Susan Hubbard and John Lee. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

The Department of Energy’s Oak Ridge National Laboratory has exclusively licensed battery electrolyte technology to Safire Technology Group. The collection of five patented technologies is designed for a drop-in additive for lithium-ion batteries that prevents explosions and fire from impact.

Eight ORNL scientists are among the world’s most highly cited researchers, Credit: Butch Newton/ORNL, U.S. Dept. of Energy

Eight ORNL scientists are among the world’s most highly cited researchers, according to a bibliometric analysis conducted by the scientific publication analytics firm Clarivate.

ORNL, NREL, and Berkeley Lab have launched Stor4Build, a consortium on energy storage for buildings. ​​​​​​​Credit: NREL, in collaboration with Berkeley Lab and ORNL.

Stor4Build is a new consortium focused on energy storage for buildings that will accelerate the growth, optimization and deployment of storage technologies.

ORNL researchers led by Michael Garvin, left, and David Kainer discovered genetic mutations called structural variants and linked them to autism spectrum disorders, demonstrating an approach that could be used to develop better diagnostics and drug therapies. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL researchers discovered genetic mutations that underlie autism using a new approach that could lead to better diagnostics and drug therapies.

Oak Ridge National Laboratory researchers developed a real-time evaluation tool that makes it easier for aging buildings to be retrofitted with energy efficient prefabricated panels by providing accurate onsite installation measurements that guide the installation process. Credit: ORNL, U.S. Dept. of Energy

Researchers at ORNL have developed a tool that provides accurate measurements and positioning directions to those installing energy-efficient panels over existing building exteriors. This method will decrease installation time and cost by more than 25%.

Field emission scanning electron microscopy reveals the microstructure of the porous activated carbon that can confine hydrogen at the nanoscale. Credit: Joaquin Silvestre-Albero

Neutron scattering techniques were used as part of a study of a novel nanoreactor material that grows crystalline hydrogen clathrates, or HCs, capable of storing hydrogen.