Skip to main content
Technology Innovation Program

Five technologies invented by scientists at the Department of Energy’s Oak Ridge National Laboratory have been selected for targeted investment through ORNL’s Technology Innovation Program.

Data from different sources are joined on platforms created by ORNL researchers to offer better information for decision makers. Credit: ORNL/Nathan Armistead

When the COVID-19 pandemic stunned the world in 2020, researchers at ORNL wondered how they could extend their support and help

Oak Ridge National Laboratory’s Mitch Allmond works with the Facility for Rare Isotope Beams Decay Station initiator, which combined diverse detectors for FRIB’s first experiment. Credit: Robert Grzywacz/ORNL, U.S. Dept. of Energy

Two decades in the making, a new flagship facility for nuclear physics opened on May 2, and scientists from the Department of Energy’s Oak Ridge National Laboratory have a hand in 10 of its first 34 experiments.

Frontier has arrived, and ORNL is preparing for science on Day One. Credit: Carlos Jones/ORNL, Dept. of Energy

The Frontier supercomputer at the Department of Energy’s Oak Ridge National Laboratory earned the top ranking today as the world’s fastest on the 59th TOP500 list, with 1.1 exaflops of performance. The system is the first to achieve an unprecedented level of computing performance known as exascale, a threshold of a quintillion calculations per second.

Oak Ridge National Laboratory researchers quantified human behaviors during the early days of COVID-19, which could be useful for disaster response or city planning. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory have empirically quantified the shifts in routine daytime activities, such as getting a morning coffee or takeaway dinner, following safer at home orders during the early days of the COVID-19 pandemic.

Scientists, from left, Parans Paranthaman, Tina Summers and Merlin Theodore at the DOE’s Carbon Fiber Technology Facility at ORNL are partnering with industry and university to develop antiviral materials for N95 masks. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers collaborated with Iowa State University and RJ Lee Group to demonstrate a safe and effective antiviral coating for N95 masks. The coating destroys the COVID-19-causing coronavirus and could enable reuse of masks made from various fabrics.

An ORNL-led team studied the SARS-CoV-2 spike protein in the trimer state, shown here, to pinpoint structural transitions that could be disrupted to destabilize the protein and negate its harmful effects. Credit: Debsindhu Bhowmik/ORNL, U.S. Dept. of Energy

To explore the inner workings of severe acute respiratory syndrome coronavirus 2, or SARS-CoV-2, researchers from ORNL developed a novel technique.

ORNL researchers proved that COVID-19 vaccines can be kept ultra-cool for an extended period in a retrofitted commercial storage container, providing a resource for safe delivery to remote locations. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have retrofitted a commercial refrigeration container designed to ensure COVID-19 vaccines remain at ultra-low temperatures during long transport and while locally stored.

Researchers used an atomic force microscope to test how easily particles of the novel coronavirus cling to certain surfaces, a property known as adhesion energy. Credit: Ali Passian/ORNL, U.S. Dept. of Energy

A study by Department of Energy researchers detailed a potential method to detect the novel coronavirus

Ashleigh Kimberlin and Mikayla Molnar achieve success with a gas-trapping apparatus for Ac-225 production. Credit: ORNL, U.S. Dept. of Energy

In experiment after experiment, the synthetic radioisotope actinium-225 has shown promise for targeting and attacking certain types of cancer cells.