Skip to main content
NSBP Annual Conference attendees came to ORNL on Nov. 10, 2023. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL and the University of Tennessee, Knoxville, co-hosted the 2023 National Society of Black Physicists Annual Conference with the theme "Frontiers in Physics: From Quantum to Materials to the Cosmos.” As part of the three-day conference held near UT, attendees took a 30-mile trip to the ORNL campus for facility tours, science talks and workshops.

ORNL’s Tomás Rush examines a culture as part of his research into the plant-fungus relationship that can help or hinder ecosystem health. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

New computational framework speeds discovery of fungal metabolites, key to plant health and used in drug therapies and for other uses. 
 

Researchers at Corning have found that understanding the stability of the rings of atoms in glass materials can help predict the performance of glass products.

Corning uses neutron scattering to study the stability of different types of glass. Recently, researchers for the company have found that understanding the stability of the rings of atoms in glass materials can help predict the performance of glass products.

Pictured is Venugopal Koikal Varma, group leader for ORNL’s Remote Systems group. ORNL, U.S. Dept. of Energy

ORNL will lead a new DOE-funded project designed to accelerate bringing fusion energy to the grid. The Accelerate award focuses on developing a fusion power plant design concept that supports remote maintenance and repair methods for the plasma-facing components in fusion power plants.

Howard Wilson and Gary Staebler

Two fusion energy leaders have joined ORNL in the Fusion and Fission Energy and Science Directorate, or FFESD.

The illustration depicts ocean surface currents simulated by MPAS-Ocean. Credit: Los Alamos National Laboratory, E3SM, U.S. Dept. of Energy

A team from DOE’s Oak Ridge, Los Alamos and Sandia National Laboratories has developed a new solver algorithm that reduces the total run time of the Model for Prediction Across Scales-Ocean, or MPAS-Ocean, E3SM’s ocean circulation model, by 45%. 

A Univ. of Michigan-led team used Frontier, the world’s first exascale supercomputer, to simulate a system of nearly 75,000 magnesium atoms at near-quantum accuracy. Credit: SC23

 

A team of eight scientists won the Association for Computing Machinery’s 2023 Gordon Bell Prize for their study that used the world’s first exascale supercomputer to run one of the largest simulations of an alloy ever and achieve near-quantum accuracy.

INFUSE logo

ORNL is leading three research collaborations with fusion industry partners through the Innovation Network for FUSion Energy, or INFUSE, program that will focus on resolving technical challenges and developing innovative solutions to make practical fusion energy a reality.  

red and green sphagnum moss

A type of peat moss has surprised scientists with its climate resilience: Sphagnum divinum is actively speciating in response to hot, dry conditions. 

When exposed to radiation, electrons produced within molten zinc chloride, or ZnCl2, can be observed in three distinct singly occupied molecular orbital states, plus a more diffuse, delocalized state. Credit: Hung H. Nguyen/University of Iowa

In a finding that helps elucidate how molten salts in advanced nuclear reactors might behave, scientists have shown how electrons interacting with the ions of the molten salt can form three states with different properties. Understanding these states can help predict the impact of radiation on the performance of salt-fueled reactors.