Skip to main content
This illustration demonstrates how atomic configurations with an equiatomic concentration of niobium (Nb), tantalum (Ta) and vanadium (V) can become disordered. The AI model helps researchers identify potential atomic configurations that can be used as shielding for housing fusion applications in a nuclear reactor. Credit: Massimiliano Lupo Pasini/ORNL, U.S. Dept. of Energy

A study led by the Department of Energy’s Oak Ridge National Laboratory details how artificial intelligence researchers created an AI model to help identify new alloys used as shielding for housing fusion applications components in a nuclear reactor. The findings mark a major step towards improving nuclear fusion facilities.

ORNL's Spallation Neutron Source, the nation’s leading source of pulsed neutron beams for research, was recently restarted after nine months of upgrade work. Credit: ORNL, U.S. Dept. of Energy

ORNL's Spallation Neutron Source, the nation’s leading source of pulsed neutron beams for research, was recently restarted after nine months of upgrade work. 

Moe Khaleel, left, associate laboratory director for national security sciences, and Maurice Singleton, chief executive officer of U2opia Technology, celebrate the partnership between Oak Ridge National Laboratory and U2opia Technology. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

U2opia Technology has licensed Situ and Heartbeat, a package of technologies from the Department of Energy’s Oak Ridge National Laboratory that offer a new method for advanced cybersecurity monitoring in real time. 

Gage Slacum looks at a circuit board through a microscope. Credit: Josie Fellers/ORNL, U.S. Dept. of Energy

Summer interns at the Department of Energy’s Oak Ridge National Laboratory recently dove into various smart devices to better understand cybersecurity vulnerabilities posed by technology meant to simplify a user’s life.

Takeshi Egami stands at his workstation at ORNL’s Spallation Neutron Source where he used novel experimental methods to propose the density wave theory. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Distinguished materials scientist Takeshi Egami has spent his career revealing the complex atomic structure of metallic glass and other liquids — sometimes sharing theories with initially resistant minds in the scientific community. 

dog

After retiring from Y-12, Scott Abston joined the Isotope Science and Engineering Directorate to support isotope production and work with his former manager. He now leads a team maintaining critical equipment for medical and space applications. Abston finds fulfillment in mentoring his team and is pleased with his decision to continue working.

ORNL uses old radiation detectors repurposed into plaques

On Feb. 15, 2024, the one billionth item, also known as an “occupancy,” was scanned at the Port of Aqaba, Jordan, one of the early sites where radiation detection equipment was installed. This milestone shows the extent of countries committed to preventing the spread of radioactive material through the amount of data volunteered to ORNL for continuous improvement. As adversaries push the limits of smuggling dangerous material, this collaboration pushes back through science-backed analysis. 

ORNL scientists used molecular dynamics simulations, exascale computing, lab testing and analysis to accelerate the development of an energy-saving method to produce nanocellulosic fibers.

A team led by scientists at ORNL identified and demonstrated a method to process a plant-based material called nanocellulose that reduced energy needs by a whopping 21%, using simulations on the lab’s supercomputers and follow-on analysis.

ORNL intern Elton Aba

Elton Aba, an intern at the Department of Energy’s Oak Ridge National Laboratory, collaborated with researchers to explore an intriguing intersection: how biology can inform cybersecurity. Aba shared some of his findings on how biomimicry could help secure our nation’s critical infrastructure. 

Mohamad Zineddin

Mohamad Zineddin, a distinguished researcher in nuclear and radiological engineering, recently received the Roger Howsley Award for Excellence in Nuclear Security.