Skip to main content
Instantaneous solution quantities shown for a static Mach 1.4 solution on a mesh consisting of 33 billion elements using 33,880 GPUs, or 90% of Frontier.  From left to right, contours show the mass fractions of the hydroxyl radical and H2O, the temperature in Kelvin, and the local Mach number. Credit: Gabriel Nastac/NASA

Since 2019, a team of NASA scientists and their partners have been using NASA’s FUN3D software on supercomputers located at the Department of Energy’s Oak Ridge Leadership Computing Facility to conduct computational fluid dynamics simulations of a human-scale Mars lander. The team’s ongoing research project is a first step in determining how to safely land a vehicle with humans onboard onto the surface of Mars.

A multidirectorate group from ORNL attended AGU23 and came away inspired for the year ahead in geospatial, earth and climate science

ORNL scientists and researchers attended the annual American Geophysical Union meeting and came away inspired for the year ahead in geospatial, earth and climate science. 

Chelsea Chen, polymer physicist at ORNL, stands in front of an eight-channel potentiostat and temperature chamber used for battery and electrochemical testing. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Chelsea Chen, a polymer physicist at ORNL, is studying ion transport in solid electrolytes that could help electric vehicle battery charges last longer.

: ORNL climate modeling expertise contributed to an AI-backed model that assesses global emissions of ammonia from croplands now and in a warmer future, while identifying mitigation strategies. This map highlights croplands around the world. Credit: U.S. Geological Survey

ORNL climate modeling expertise contributed to a project that assessed global emissions of ammonia from croplands now and in a warmer future, while also identifying solutions tuned to local growing conditions.

Prasad Kandula builds a medium-voltage solid state circuit breaker as part of ORNL’s project to develop medium-voltage power electronics in GRID-C. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists at ORNL are looking for a happy medium to enable the grid of the future, filling a gap between high and low voltages for power electronics technology that underpins the modern U.S. electric grid.

Using a better modeling framework, with data collected from Mississippi Delta marshes, scientists are able to improve the predictions of methane and other greenhouse gas emissions. Credit: Matthew Berens/ORNL, U.S Dept. of Energy

Scientists at the Department of Energy’s Oak Ridge National Laboratory are using a new modeling framework in conjunction with data collected from marshes in the Mississippi Delta to improve predictions of climate-warming methane and nitrous oxide.

ORNL’s Tomás Rush examines a culture as part of his research into the plant-fungus relationship that can help or hinder ecosystem health. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

New computational framework speeds discovery of fungal metabolites, key to plant health and used in drug therapies and for other uses. 
 

Louise Stevenson uses her expertise as an environmental toxicologist to evaluate the effects of stressors such as chemicals and other contaminants on aquatic systems. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

Louise Stevenson uses her expertise as an environmental toxicologist to evaluate the effects of stressors such as chemicals and other contaminants on aquatic systems.

Researchers at Corning have found that understanding the stability of the rings of atoms in glass materials can help predict the performance of glass products.

Corning uses neutron scattering to study the stability of different types of glass. Recently, researchers for the company have found that understanding the stability of the rings of atoms in glass materials can help predict the performance of glass products.

ORNL intern Jack Orebaugh holds the drone used in his research to help locate human remains. Credit: Lena Shoemaker/ORNL, U.S. Dept. of Energy

Jack Orebaugh, a forensic anthropology major at the University of Tennessee, Knoxville, has a big heart for families with missing loved ones. When someone disappears in an area of dense vegetation, search and recovery efforts can be difficult, especially when a missing person’s last location is unknown. Recognizing the agony of not knowing what happened to a family or friend, Orebaugh decided to use his internship at the Department of Energy’s Oak Ridge National Laboratory to find better ways to search for lost and deceased people using cameras and drones.