Skip to main content
An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries. Credit: Phoenix Pleasant/ORNL

An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries.

Neutron Scattering Society

The Neutron Scattering Society of America, or NSSA, recognized Oak Ridge National Laboratory’s Ke An and Ken Herwig as fellows for their outstanding contributions to neutron scattering. 

Jens Dilling has been named associate laboratory director for the Neutron Sciences Directorate at the Department of Energy’s Oak Ridge National Laboratory, effective April 1.

Jens Dilling has been named associate laboratory director for the Neutron Sciences Directorate at the Department of Energy’s Oak Ridge National Laboratory, effective April 1.

3D printed “Frankenstein design” collimator show the “scars” where the individual parts are joined

Scientists at ORNL have developed 3-D-printed collimator techniques that can be used to custom design collimators that better filter out noise during different types of neutron scattering experiments

ORNL engineer Canan Karakaya uses computational modeling to design and improve chemical reactors and how they are operated to convert methane, carbon dioxide, ammonia or ethanol into higher-value chemicals or energy-dense fuels. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Canan Karakaya, a R&D Staff member in the Chemical Process Scale-Up group at ORNL, was inspired to become a chemical engineer after she experienced a magical transformation that turned ammonia gas into ammonium nitrate, turning a liquid into white flakes gently floating through the air. 

Astrophysicists at the State University of New York, Stony Brook, and University of California, Berkeley created 3D simulations of X-ray bursts on the surfaces of neutron stars. Two views of these X-ray bursts are shown: the left column is viewed from above while the right column shows it from a shallow angle above the surface.

Astrophysicists at the State University of New York, Stony Brook and University of California, Berkeley, used the Oak Ridge Leadership Computing Facility’s Summit supercomputer to compare models of X-ray bursts in 2D and 3D. 

The 2023 Billion-Ton Report identifies feedstocks that could be available to produce biofuels to decarbonize the transportation and industrial sectors while potentially tripling the U.S. bioeconomy. The map indicates a mature market scenario, including emerging resources. Credit: ORNL/U.S. Dept. of Energy

The United States could triple its current bioeconomy by producing more than 1 billion tons per year of plant-based biomass for renewable fuels, while meeting projected demands for food, feed, fiber, conventional forest products and exports, according to the DOE’s latest Billion-Ton Report led by ORNL.

Ilenne Del Valle is merging her expertise in synthetic biology and environmental science to develop new technologies to help scientists better understand and engineer ecosystems for climate resilience. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

Ilenne Del Valle is merging her expertise in synthetic biology and environmental science to develop new technologies to help scientists better understand and engineer ecosystems for climate resilience. 

2023 Top Science Achievements at SNS & HFIR

The 2023 top science achievements from HFIR and SNS feature a broad range of materials research published in high impact journals such as Nature and Advanced Materials.

The AI agent, incorporating a language model-based molecular generator and a graph neural network-based molecular property predictor, processes a set of user-provided molecules (green) and produces/suggests new molecules (red) with desired chemical/physical properties (i.e. excitation energy). Image credit: Pilsun You, Jason Smith/ORNL, U.S. DOE

A team of computational scientists at ORNL has generated and released datasets of unprecedented scale that provide the ultraviolet visible spectral properties of over 10 million organic molecules.