Skip to main content
From left, J.D. Rice, Trevor Michelson and Chris Seck look at a monitor in Seck’s lab. The three are wearing safety glasses to protect against the laser beams used by the scanning vibrometer, which is helping Seck quantify vibration of an appliance in his lab. Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL scientists are working on a project to engineer and develop a cryogenic ion trap apparatus to simulate quantum spin liquids, a key research area in materials science and neutron scattering studies.

Mohamad Zineddin

Mohamad Zineddin hopes to establish an interdisciplinary center of excellence for nuclear security at ORNL, combining critical infrastructure assessment and protection, risk mitigation, leadership in nuclear security, education and training, nuclear security culture and resilience strategies and techniques.

Howard Wilson

Howard Wilson explores how to accelerate the delivery of fusion energy as Fusion Pilot Plant R&D lead at ORNL. Wilson envisions a fusion hub with ORNL at the center, bringing together the lab's unique expertise and capabilities with domestic and international partnerships to realize the potential of fusion energy.

Joon-Seok Kim Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Researchers at ORNL are using a machine-learning model to answer ‘what if’ questions stemming from major events that impact large numbers of people. By simulating an event, such as extreme weather, researchers can see how people might respond to adverse situations, and those outcomes can be used to improve emergency planning.

Jiafu Mao, left, and Yaoping Wang discuss their analysis of urban and rural vegetation resilience across the United States in the EVEREST visualization lab at ORNL. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

Scientists at ORNL completed a study of how well vegetation survived extreme heat events in both urban and rural communities across the country in recent years. The analysis informs pathways for climate mitigation, including ways to reduce the effect of urban heat islands.

Quietly making noise: Measuring differential privacy could balance meaningful analytics and identity protection

To balance personal safety and research innovation, researchers at ORNL are employing a mathematical technique known as differential privacy to provide data privacy guarantees.

The transportation and industrial sectors together account for more than 50% of the country’s carbon footprint. Defossilization could help reduce new emissions from these and other difficult-to-electrify segments of the U.S. economy.

Scientists at Oak Ridge National Laboratory and six other Department of Energy national laboratories have developed a United States-based perspective for achieving net-zero carbon emissions. 

colors

Simulations performed on the Summit supercomputer at ORNL are cutting through that time and expense by helping researchers digitally customize the ideal alloy. 

Architects of the Adaptable IO System, seen here with Frontier's Orion file system: Scott Klasky, left, heads the ADIOS project and leads ORNL's Workflow Systems group, and Norbert Podhorszki, an ORNL computer scientist, oversees ADIOS's continuing development. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Integral to the functionality of ORNL's Frontier supercomputer is its ability to store the vast amounts of data it produces onto its file system, Orion. But even more important to the computational scientists running simulations on Frontier is their capability to quickly write and read to Orion along with effectively analyzing all that data. And that’s where ADIOS comes in.

New research predicts peak groundwater extraction for key basins around the globe by the year 2050. The map indicates groundwater storage trends for Earth’s 37 largest aquifers using data from the NASA Jet Propulsion Laboratory GRACE satellite. Credit: NASA.

Groundwater withdrawals are expected to peak in about one-third of the world’s basins by 2050, potentially triggering significant trade and agriculture shifts, a new analysis finds.