Skip to main content
Kevin Robb, a staff scientist at the Department of Energy’s Oak Ridge National Laboratory, is taking what he learned from developing the Liquid Salt Test Loop—a key tool in deploying molten salt technology applications

Thanks in large part to developing and operating a facility for testing molten salt reactor (MSR) technologies, nuclear experts at the Energy Department’s Oak Ridge National Laboratory (ORNL) are now tackling the next generation of another type of clean energy—concentrating ...

From left, Andrew Lupini and Juan Carlos Idrobo use ORNL’s new monochromated, aberration-corrected scanning transmission electron microscope, a Nion HERMES to take the temperatures of materials at the nanoscale. Image credit: Oak Ridge National Laboratory

A scientific team led by the Department of Energy’s Oak Ridge National Laboratory has found a new way to take the local temperature of a material from an area about a billionth of a meter wide, or approximately 100,000 times thinner than a human hair. This discove...

A senior research scientist at Oak Ridge National Laboratory, Olufemi “Femi” Omitaomu is leveraging Big Data for urban resilience. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; photographer Jason Richards.

At the Department of Energy’s Oak Ridge National Laboratory, Olufemi “Femi” Omitaomu is leveraging Big Data for urban resilience, helping growing cities support future infrastructure and resource needs. A senior research scientist for ORNL’s Computational Sciences and Engineeri...

ORNL researcher Miaofang Chi refines her microscopy techniques toward understanding how and why materials have certain properties.

Material surfaces and interfaces may appear flat and void of texture to the naked eye, but a view from the nanoscale reveals an intricate tapestry of atomic patterns that control the reactions between the material and its environment. Electron microscopy allows researchers to probe...

Arjun Shankar

The field of “Big Data” has exploded in the blink of an eye, growing exponentially into almost every branch of science in just a few decades. Sectors such as energy, manufacturing, healthcare and many others depend on scalable data processing and analysis for continued in...

Scientists will use ORNL’s computing resources such as the Titan supercomputer to develop deep learning solutions for data analysis. Credit: Jason Richards/Oak Ridge National Laboratory, U.S. Dept. of Energy.

A team of researchers from Oak Ridge National Laboratory has been awarded nearly $2 million over three years from the Department of Energy to explore the potential of machine learning in revolutionizing scientific data analysis. The Advances in Machine Learning to Improve Scient...

ORNL’s Xiahan Sang unambiguously resolved the atomic structure of MXene, a 2D material promising for energy storage, catalysis and electronic conductivity. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; photographer Carlos Jones

Researchers have long sought electrically conductive materials for economical energy-storage devices. Two-dimensional (2D) ceramics called MXenes are contenders. Unlike most 2D ceramics, MXenes have inherently good conductivity because they are molecular sheets made from the carbides ...

The Transforming Additive Manufacturing through Exascale Simulation project (ExaAM) is building a new multi-physics modeling and simulation platform for 3D printing of metals

Oak Ridge National Laboratory experts are playing leading roles in the recently established Department of Energy’s (DOE’s) Exascale Computing Project (ECP), a multi-lab initiative responsible for developing the strategy, aligning the resources, and conducting the R&D necessary to achieve the nation’s imperative of delivering exascale computing by 2021.

Default image of ORNL entry sign

The Department of Energy’s Oak Ridge National Laboratory has received funding from DOE’s Exascale Computing Project (ECP) to develop applications for future exascale systems that will be 50 to 100 times more powerful than today’s fastest supercomputers. 

Default image of ORNL entry sign

Through a network that consists of hundreds of low-cost monitors that plug into standard 110-volt outlets, GridEye can play a role in ensuring the reliability of the nation's power grids. The system, developed by researchers at Oak Ridge National Laboratory, provides real-time information about dyna...