Skip to main content
Fengqi “Frank” Li brings computational and architectural expertise to building energy modeling in ORNL’s Grid Interactive Controls group. Genevieve Martin/ORNL, U.S. Dept. of Energy

Although he built his career around buildings, Fengqi “Frank” Li likes to break down walls. Li was trained as an architect, but he doesn’t box himself in. Currently he is working as a computational developer at ORNL. But Li considers himself a designer. To him, that’s less a box than a plane – a landscape scattered with ideas, like destinations on a map that can be connected in different ways. 

Instantaneous solution quantities shown for a static Mach 1.4 solution on a mesh consisting of 33 billion elements using 33,880 GPUs, or 90% of Frontier.  From left to right, contours show the mass fractions of the hydroxyl radical and H2O, the temperature in Kelvin, and the local Mach number. Credit: Gabriel Nastac/NASA

Since 2019, a team of NASA scientists and their partners have been using NASA’s FUN3D software on supercomputers located at the Department of Energy’s Oak Ridge Leadership Computing Facility to conduct computational fluid dynamics simulations of a human-scale Mars lander. The team’s ongoing research project is a first step in determining how to safely land a vehicle with humans onboard onto the surface of Mars.

Mandy Mahoney, third from left, director of the DOE Office Of Energy Efficiency and Renewable Energy’s Building Technologies Office, welcomed 21 students representing seven universities across the nation to the sixth annual JUMP into STEM finals competition at Oak Ridge National Laboratory. Credit: Kurt Weiss/ORNL, U.S. Dept. of Energy

Students with a focus on building science will spend 10 weeks this summer interning at ORNL, the National Renewable Energy Laboratory and Pacific Northwest Laboratory as winners of the DOE’s Office of Energy Efficiency and Renewable Energy’s Building Technologies Office sixth annual JUMP into STEM finals competition.

New system combines human, artificial intelligence to improve experimentation

To capitalize on AI and researcher strengths, scientists developed a human-AI collaboration recommender system for improved experimentation performance. 

Chelsea Chen, polymer physicist at ORNL, stands in front of an eight-channel potentiostat and temperature chamber used for battery and electrochemical testing. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Chelsea Chen, a polymer physicist at ORNL, is studying ion transport in solid electrolytes that could help electric vehicle battery charges last longer.

An Oak Ridge National Laboratory study projects how geothermal heat pumps that derive heating and cooling from the ground would improve grid reliability and reduce costs and carbon emissions when widely deployed. Credit: Chad Malone, ORNL, U.S. Dept. of Energy

A modeling analysis led by ORNL gives the first detailed look at how geothermal energy can relieve the electric power system and reduce carbon emissions if widely implemented across the United States within the next few decades. 

In a win for chemistry, inventors at ORNL have designed a closed-loop path for synthesizing an exceptionally tough carbon-fiber-reinforced polymer, or CFRP, and later recovering all of its starting materials.

In a win for chemistry, inventors at ORNL have designed a closed-loop path for synthesizing an exceptionally tough carbon-fiber-reinforced polymer, or CFRP, and later recovering all of its starting materials.

Jason DeGraw, a buildings researcher in thermal energy storage at ORNL, has been named a 2024 ASHRAE Fellow. Credit: ORNL, U.S. Dept. of Energy

The American Society of Heating, Refrigeration and Air-Conditioning Engineers, or ASHRAE, selected Jason DeGraw, a researcher with ORNL, as one of 23 members elevated to Fellow during its 2024 winter conference.

: ORNL climate modeling expertise contributed to an AI-backed model that assesses global emissions of ammonia from croplands now and in a warmer future, while identifying mitigation strategies. This map highlights croplands around the world. Credit: U.S. Geological Survey

ORNL climate modeling expertise contributed to a project that assessed global emissions of ammonia from croplands now and in a warmer future, while also identifying solutions tuned to local growing conditions.

An encapsulation system developed by ORNL researchers prevents salt hydrates, which are environmentally friendly thermal energy storage materials, from leaking and advances their use in heating and cooling applications. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

ORNL researchers have developed a novel way to encapsulate salt hydrate phase-change materials within polymer fibers through a coaxial pulling process. The discovery could lead to the widespread use of the low-carbon materials as a source of insulation for a building’s envelope.