Skip to main content
Debjani Pal’s photo “Three-Dimensional Breast Cancer Spheroids” won the Director’s Choice Award in Oak Ridge National Laboratory’s Art of Science photo competition. It will be displayed at the American Museum of Science and Energy in Oak Ridge, Tenn. Credit: Debjani Pal/ORNL, U.S. Dept. of Energy
“Three-Dimensional Breast Cancer Spheroids” submitted by radiotherapeutics researcher Debjani Pal is stunning. Brilliant blue dots pop from an electric sphere threaded with bright colors: greens, aqua, hot pink and red.
A small droplet of water is suspended in midair via an electrostatic levitator that lifts charged particles using an electric field that counteracts gravity. Credit: Iowa State University/ORNL, U.S. Dept. of Energy

How do you get water to float in midair? With a WAND2, of course. But it’s hardly magic. In fact, it’s a scientific device used by scientists to study matter.

The sun sets behind the ORNL Visitor Center in this aerial photo from April 2023. Credit: Kase Clapp/ORNL, U.S. Dept. of Energy

In fiscal year 2023 — Oct. 1–Sept. 30, 2023 — Oak Ridge National Laboratory was awarded more than $8 million in technology maturation funding through the Department of Energy’s Technology Commercialization Fund, or TCF.

ORNL’s Fulvia Pilat and Karren More recently participated in the inaugural 2023 Nanotechnology Infrastructure Leaders Summit and Workshop at the White House, held Sept. 11–13. Credit: ORNL, U.S. Dept. of Energy

ORNL’s Fulvia Pilat and Karren More recently participated in the inaugural 2023 Nanotechnology Infrastructure Leaders Summit and Workshop at the White House.

Oak Ridge National Laboratory entrance sign

The Department of Energy’s Office of Science has selected three ORNL research teams to receive funding through DOE’s new Biopreparedness Research Virtual Environment initiative.

The DEMAND single crystal diffractometer at the High Flux Isotope Reactor, or HFIR, is the latest neutron instrument at the Department of Energy’s Oak Ridge National Laboratory to be equipped with machine learning-assisted software, called ReTIA. Credit: Jeremy Rumsey/ORNL, U.S. Dept. of Energy

Neutron experiments can take days to complete, requiring researchers to work long shifts to monitor progress and make necessary adjustments. But thanks to advances in artificial intelligence and machine learning, experiments can now be done remotely and in half the time.

ORNL’s award-winning ultraclean condensing high-efficiency natural gas furnace features an affordable add-on technology that can remove more than 99.9% of acidic gases and other emissions. The technology can also be added to other natural gas-driven equipment. Credit: Jill Hemman/ORNL

Natural gas furnaces not only heat your home, they also produce a lot of pollution. Even modern high-efficiency condensing furnaces produce significant amounts of corrosive acidic condensation and unhealthy levels of nitrogen oxides

Paul Langan will oversee ORNL's research directorate focused on biological and environmental systems science. Credit: ORNL, U.S. Dept. of Energy

Paul Langan will join ORNL in the spring as associate laboratory director for the Biological and Environmental Systems Science Directorate.

ORNL fusion technology scientist Tim Bigelow, right, stands near the control console in ORNL’s  fusion control room with Matt Houde of Quaise Energy. Their partnership aims to tackle technical challenges with the Millimeter Wave Drilling System that Quaise has developed. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

Researchers in the geothermal energy industry are joining forces with fusion experts at ORNL to repurpose gyrotron technology, a tool used in fusion. Gyrotrons produce high-powered microwaves to heat up fusion plasmas.

Magnetic quantum material broadens platform for probing next-gen information technologies

Scientists at ORNL used neutron scattering to determine whether a specific material’s atomic structure could host a novel state of matter called a spiral spin liquid.