Skip to main content
The Department of Energy’s Oak Ridge National Laboratory announced the establishment of its Center for AI Security Research, or CAISER, to address threats already present as governments and industries around the world adopt artificial intelligence and take advantage of the benefits it promises in data processing, operational efficiencies and decision-making. Credit: Rachel Green/ORNL, U.S. Dept. of Energy

The Department of Energy’s Oak Ridge National Laboratory announced the establishment of the Center for AI Security Research, or CAISER, to address threats already present as governments and industries around the world adopt artificial intelligence and take advantage of the benefits it promises in data processing, operational efficiencies and decision-making.

Attendees of SMC23 pose for their annual group photo in downtown Knoxville, TN.

ORNL hosted its annual Smoky Mountains Computational Sciences and Engineering Conference in person for the first time since the COVID-19 pandemic.

Members of the Analytics and AI Methods at Scale group in the National Center for Computational Sciences at ORNL developed the mixed-precision performance benchmarking tool OpenMxP. From left are group leader Feiyi Wang, technical lead Mike Matheson and research scientist Hao Lu. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

As Frontier, the world’s first exascale supercomputer, was being assembled at the Oak Ridge Leadership Computing Facility in 2021, understanding its performance on mixed-precision calculations remained a difficult prospect.

Summit Plus banner

The Oak Ridge Leadership Computing Facility, a Department of Energy Office of Science user facility at ORNL, is pleased to announce a new allocation program for computing time on the IBM AC922 Summit supercomputer.

Connecting  wires to the interface of the topological insulator and superconductor enables probing of novel electronic properties. Researchers aim for qubits based on theorized Majorana particles. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Quantum computers process information using quantum bits, or qubits, based on fragile, short-lived quantum mechanical states. To make qubits robust and tailor them for applications, researchers from the Department of Energy’s Oak Ridge National Laboratory sought to create a new material system.

Conceptual art depicts an atomic nucleus and merging neutron stars, respectively, areas of study in ORNL-led projects called NUCLEI and ENAF within the Scientific Discovery through Advanced Computing, or SciDAC, program. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

ORNL is leading two nuclear physics research projects within the Scientific Discovery through Advanced Computing, or SciDAC, program from the Department of Energy Office of Science.

Chathuddasie Amarasinghe explains her research poster, “Using Microfluidic Mother Machine Devices to Study the Correlated Dynamics of Ribosomes and Chromosomes in Escherichia Coli.” Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Speakers, scientific workshops, speed networking, a student poster showcase and more energized the Annual User Meeting of the Department of Energy’s Center for Nanophase Materials Sciences, or CNMS, Aug. 7-10, near Market Square in downtown Knoxville, Tennessee.

A rendering of the CFM RISE program’s open fan architecture. (bottom) A GE visualization of turbulent flow in the tip region of an open fan blade using the Frontier supercomputer at ORNL. Credit: CFM, GE Research (CFM is a 50­–50 joint company between GE and Safran Aircraft Engines)

Outside the high-performance computing, or HPC, community, exascale may seem more like fodder for science fiction than a powerful tool for scientific research. Yet, when seen through the lens of real-world applications, exascale computing goes from ethereal concept to tangible reality with exceptional benefits.

A new nanoscience study led by an ORNL quantum researcher takes a big-picture look at how scientists study materials at the smallest scales. Credit: Getty Images

A new nanoscience study led by a researcher at ORNL takes a big-picture look at how scientists study materials at the smallest scales.

A beam of excited sodium-32 nuclei implants in the FRIB Decay Station initiator is used to detect decay signatures of isotopes. Credit: Gary Hollenhead, Toby King and Adam Malin/ORNL, U.S. Dept. of Energy

Timothy Gray of ORNL led a study that may have revealed an unexpected change in the shape of an atomic nucleus. The surprise finding could affect our understanding of what holds nuclei together, how protons and neutrons interact and how elements form.