Skip to main content
Tristen Mullins. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Tristen Mullins enjoys the hidden side of computers. As a signals processing engineer for ORNL, she tries to uncover information hidden in components used on the nation’s power grid — information that may be susceptible to cyberattacks.

Portrait of Craig Blue

Craig Blue, Defense Manufacturing Program Director at the Department of Energy’s Oak Ridge National Laboratory, was recently elected to a two-year term on the Institute for Advanced Composites Manufacturing Innovation Consortium Council, a body of professionals from academia, state governments, and national laboratories that provides strategic direction and oversight to IACMI.

Researchers captured atomic-level insights on the rare-earth mineral monazite to inform future design of flotation collector molecules, illustrated above, that can aid in the recovery of critical materials. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Critical Materials Institute researchers at Oak Ridge National Laboratory and Arizona State University studied the mineral monazite, an important source of rare-earth elements, to enhance methods of recovering critical materials for energy, defense and manufacturing applications.

A team led by Raymond Borges Hink has developed a method using blockchain to protect communications between electronic devices in the electric grid, preventing cyberattacks and cascading blackouts. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Although blockchain is best known for securing digital currency payments, researchers at the Department of Energy’s Oak Ridge National Laboratory are using it to track a different kind of exchange: It’s the first time blockchain has ever been used to validate communication among devices on the electric grid.

Thomaz Carvalhaes. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

In human security research, Thomaz Carvalhaes says, there are typically two perspectives: technocentric and human centric. Rather than pick just one for his work, Carvalhaes uses data from both perspectives to understand how technology impacts the lives of people.

Solar panels funded by the Honnold Foundation are installed in Adjuntas, Puerto Rico. Credit: Fabio Andrade

When Hurricane Maria battered Puerto Rico in 2017, winds snapped trees and destroyed homes, while heavy rains transformed streets into rivers. But after the storm passed, the human toll continued to grow as residents struggled without electricity for months. Five years later, power outages remain long and frequent.

Researchers used quantum Monte Carlo calculations to accurately render the structure and electronic properties of germanium selenide, a semiconducting nanomaterial. Credit: Paul Kent/ORNL, U.S. Dept. of Energy

A multi-lab research team led by ORNL's Paul Kent is developing a computer application called QMCPACK to enable precise and reliable predictions of the fundamental properties of materials critical in energy research.

ORNL’s RapidCure improves lithium-ion electrode production by producing electrodes faster, reducing the energy necessary for manufacturing and eliminating the need for a solvent recycling unit. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at the Department of Energy’s Oak Ridge National Laboratory and their technologies have received seven 2022 R&D 100 Awards, plus special recognition for a battery-related green technology product.

Logan Sturm, Alvin M. Weinberg Fellow at ORNL, creates a mashup between additive manufacturing and cybersecurity research. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

How an Alvin M. Weinberg Fellow is increasing security for critical infrastructure components

Oak Ridge National Laboratory researchers used an invertible neural network, a type of artificial intelligence that mimics the human brain, to select the most suitable materials for desired properties, such as flexibility or heat resistance, with high chemical accuracy. The study could lead to more customizable materials design for industry.

A study led by researchers at ORNL could help make materials design as customizable as point-and-click.