Skip to main content
Oak Ridge National Laboratory entrance sign

The Department of Energy’s Office of Science has selected three ORNL research teams to receive funding through DOE’s new Biopreparedness Research Virtual Environment initiative.

Clouds of gray smoke in the lower left are funneled northward from wildfires in Western Canada, reaching the edge of the sea ice covering the Arctic Ocean. A second path of thick smoke is visible at the top center of the image, emanating from wildfires in the boreal areas of Russia’s Far East, in this image captured on July 13, 2023. Credit: NASA MODIS

Wildfires have shaped the environment for millennia, but they are increasing in frequency, range and intensity in response to a hotter climate. The phenomenon is being incorporated into high-resolution simulations of the Earth’s climate by scientists at the Department of Energy’s Oak Ridge National Laboratory, with a mission to better understand and predict environmental change.

This map illustrates the natural climate variability that affects the cold-season climate of the Central Southwest Asian region. Credit: Moetasim Ashfaq/ORNL

As extreme weather devastates communities worldwide, scientists are using modeling and simulation to understand how climate change impacts the frequency and intensity of these events. Although long-term climate projections and models are important, they are less helpful for short-term prediction of extreme weather that may rapidly displace thousands of people or require emergency aid.

Researchers at the Department of Energy’s Oak Ridge National Laboratory were the first to use neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry.

Researchers at the Department of Energy’s Oak Ridge National Laboratory were the first to use neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry.

A new method to control quantum states in a material is shown. The electric field induces polarization switching of the ferroelectric substrate, resulting in different magnetic and topological states. Credit: Mina Yoon, Fernando Reboredo, Jacquelyn DeMink/ORNL, U.S. Dept. of Energy

An advance in a topological insulator material — whose interior behaves like an electrical insulator but whose surface behaves like a conductor — could revolutionize the fields of next-generation electronics and quantum computing, according to scientists at ORNL.

Simulations performed on Oak Ridge National Laboratory’s Summit supercomputer generated one of the most detailed portraits to date of how turbulence disperses heat through ocean water under realistic conditions. Credit: Miles Couchman

Simulations performed on the Summit supercomputer at ORNL revealed new insights into the role of turbulence in mixing fluids and could open new possibilities for projecting climate change and studying fluid dynamics.

ORNL’s Debangshu Mukherjee was named an npj Computational Materials “Reviewer of the Year.”

ORNL’s Debangshu Mukherjee has been named an npj Computational Materials “Reviewer of the Year.”

The newest Gaea system provides increased performance for more advanced climate modeling and simulation

Oak Ridge National Laboratory, in partnership with the National Oceanic and Atmospheric Administration, is launching a new supercomputer dedicated to climate science research. The new system is the fifth supercomputer to be installed and run by the National Climate-Computing Research Center at ORNL.

Artist’s conceptual drawing illustrates the novel energy filtering technique using neutrons that enabled researchers at ORNL to freeze moving germanium telluride atoms in an unblurred image. The images offered key insights into how the material produces its outstanding thermoelectric performance. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Scientists have long sought to better understand the “local structure” of materials, meaning the arrangement and activities of the neighboring particles around each atom. In crystals, which are used in electronics and many other applications, most of the atoms form highly ordered lattice patterns that repeat. But not all atoms conform to the pattern.

Heat is typically carried through a material by vibrations known as phonons. In some crystals, however, different atomic motions — known as phasons — carry heat three times faster and farther. This illustration shows phasons made by rearranging atoms, shown by arrows. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Warming a crystal of the mineral fresnoite, ORNL scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.