Skip to main content
A multiport design allows a utility to easily interface with an EV truck stop to provide fast-charging at megawatt-scale. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory have designed architecture, software and control strategies for a futuristic EV truck stop that can draw megawatts of power and reduce carbon emissions.

Researchers used quantum Monte Carlo calculations to accurately render the structure and electronic properties of germanium selenide, a semiconducting nanomaterial. Credit: Paul Kent/ORNL, U.S. Dept. of Energy

A multi-lab research team led by ORNL's Paul Kent is developing a computer application called QMCPACK to enable precise and reliable predictions of the fundamental properties of materials critical in energy research.

The online Fuel Economy Guide, compiled by ORNL researchers, provides simple tips to save at the pump including the Trip Calculator tool to better navigate vehicle choice and estimate mileage. Credit: Storyblocks

Oak Ridge National Laboratory researchers determined that for every 5 miles per hour that drivers travel over a 50-mph speed limit, fuel economy decreases by 7% and equates to paying an extra 28 cents per gallon at current.

ORNL researchers proved that COVID-19 vaccines can be kept ultra-cool for an extended period in a retrofitted commercial storage container, providing a resource for safe delivery to remote locations. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have retrofitted a commercial refrigeration container designed to ensure COVID-19 vaccines remain at ultra-low temperatures during long transport and while locally stored.

Researchers from ORNL’s Vehicle and Autonomy Research Group created a control strategy for a hybrid electric bus that demonstrated up to 30% energy savings. Credit: University of California, Riverside

Oak Ridge National Laboratory researchers developed and demonstrated algorithm-based controls for a hybrid electric bus that yielded up to 30% energy savings compared with existing controls.

A 3D printed thermal protection shield, produced by ORNL researchers for NASA, is part of a cargo spacecraft bound for the International Space Station. The shield was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL. Credit: ORNL, U.S. Dept. of Energy

A research team at Oak Ridge National Laboratory have 3D printed a thermal protection shield, or TPS, for a capsule that will launch with the Cygnus cargo spacecraft as part of the supply mission to the International Space Station.

ORNL researchers installed and demonstrated their wireless charging technology for the first time on an autonomous vehicle – the Local Motors Olli shuttle bus. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers demonstrated their wireless charging technology on an autonomous electric vehicle for the first time in a project with Local Motors.

The REVISE-II modeling tool developed at ORNL supports decision-making for electric vehicle charging infrastructure development along interstate highways in support of intercity travel. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory have developed a nationwide modeling tool to help infrastructure planners decide where and when to locate electric vehicle charging stations along interstate highways. The goal is to encourage the adoption of EVs for cross-country travel.

ORNL’s green solvent enables environmentally friendly recycling of valuable Li-ion battery materials. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory have developed a solvent that results in a more environmentally friendly process to recover valuable materials from used lithium-ion batteries, supports a stable domestic supply chain for new batteries

The proposed Battery Identity Global Passport suggests a scannable QR code or other digital tag affixed to Li-ion batteries to identify materials for efficient end-of-life recycling. Credit: Andy Sproles, ORNL/U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory have devised a method to identify the unique chemical makeup of every lithium-ion battery around the world, information that could accelerate recycling, recover critical materials and resolve a growing waste stream.