Skip to main content
ORNL researchers observed that atomic vibrations in a twisted crystal result in winding energetic waves that govern heat transport, which may help new materials better manage heat. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

A discovery by Oak Ridge National Laboratory researchers may aid the design of materials that better manage heat.

Transition metals stitched into graphene with an electron beam form promising quantum building blocks. Credit: Ondrej Dyck, Andrew Lupini and Jacob Swett/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists demonstrated that an electron microscope can be used to selectively remove carbon atoms from graphene’s atomically thin lattice and stitch transition-metal dopant atoms in their place.

ORNL researchers determined lower heat exchange in lithium-ion batteries is caused by the strong non-harmonic forces among ions and weak interaction between layers, providing guidance for high-density battery design. Credit: Tianli Feng/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers proved that the heat transport ability of lithium-ion battery cathodes is much lower than previously determined, a finding that could help explain barriers to increasing energy storage capacity and boosting performance.