Skip to main content
A new process developed by Oak Ridge National Laboratory leverages deep learning techniques to study cell movements in a simulated environment, guided by simple physics rules similar to video-game play. Credit: MSKCC and UTK

Scientists have developed a novel approach to computationally infer previously undetected behaviors within complex biological environments by analyzing live, time-lapsed images that show the positioning of embryonic cells in C. elegans, or roundworms. Their published methods could be used to reveal hidden biological activity. 

In a study, ORNL researchers concluded that the most direct path to plastic upcycling is through designing polymers specifically for reuse, which would allow the material to be converted into high-value products. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers determined that designing polymers specifically with upcycling in mind could reduce future plastic waste considerably and facilitate a circular economy where the material is used repeatedly.

Fungi use signaling molecules called LCOs to communicate with each other and to regulate growth. Credit: Jessy Labbe/Oak Ridge National Laboratory, U.S. Dept. of Energy

Oak Ridge National Laboratory and collaborators have discovered that signaling molecules known to trigger symbiosis between plants and soil bacteria are also used by almost all fungi as chemical signals to communicate with each other.

ORNL assisted in investigating proteins called porins, one shown in red, which are found in the protective outer membrane of certain disease-causing bacteria and tether the membrane to the cell wall. Credit: Hyea (Sunny) Hwang/Georgia Tech and ORNL, U.S. Dept. of Energy

Scientists from Oak Ridge National Laboratory used high-performance computing to create protein models that helped reveal how the outer membrane is tethered to the cell membrane in certain bacteria.