Skip to main content
Man in blue shirt and grey pants holds laptop and poses next to a green plant in a lab.

John Lagergren, a staff scientist in Oak Ridge National Laboratory’s Plant Systems Biology group, is using his expertise in applied math and machine learning to develop neural networks to quickly analyze the vast amounts of data on plant traits amassed at ORNL’s Advanced Plant Phenotyping Laboratory.

Blue background with three rectangles. The first and third silver rectangles are showing the inside metal part of a fridge with small alternating horizontal rectangles going down the side in darker grey/silver.

A technology developed by Oak Ridge National Laboratory works to keep food refrigerated with phase change materials, or PCMs, while reducing carbon emissions by 30%.

Mohamad Zineddin

Mohamad Zineddin hopes to establish an interdisciplinary center of excellence for nuclear security at ORNL, combining critical infrastructure assessment and protection, risk mitigation, leadership in nuclear security, education and training, nuclear security culture and resilience strategies and techniques.

Howard Wilson

Howard Wilson explores how to accelerate the delivery of fusion energy as Fusion Pilot Plant R&D lead at ORNL. Wilson envisions a fusion hub with ORNL at the center, bringing together the lab's unique expertise and capabilities with domestic and international partnerships to realize the potential of fusion energy.

As a chemical engineer focusing on low-carbon energy sources like hydrogen, Cheekatamarla’s research at ORNL supports the deployment of clean energy technologies in buildings and industries. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Cheekatamarla is a researcher in the Multifunctional Equipment Integration group with previous experience in product deployment. He is researching alternative energy sources such as hydrogen for cookstoves and his research supports the decarbonization of building technologies. 

An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries. Credit: Phoenix Pleasant/ORNL

An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries.

Assaf Anyamba Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL’s Assaf Anyamba has spent his career using satellite images to determine where extreme weather may lead to vector-borne disease outbreaks. His work has helped the U.S. government better prepare for outbreaks that happen during periods of extended weather events such as El Niño and La Niña, climate patterns in the Pacific Ocean that can affect weather worldwide. 

ORNL engineer Canan Karakaya uses computational modeling to design and improve chemical reactors and how they are operated to convert methane, carbon dioxide, ammonia or ethanol into higher-value chemicals or energy-dense fuels. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Canan Karakaya, a R&D Staff member in the Chemical Process Scale-Up group at ORNL, was inspired to become a chemical engineer after she experienced a magical transformation that turned ammonia gas into ammonium nitrate, turning a liquid into white flakes gently floating through the air. 

ORNL researchers achieved the highest wireless power transfer level for a light-duty passenger vehicle when the team demonstrated a 100-kW wireless power transfer to an EV using ORNL’s patented polyphase electromagnetic coupling coil. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

A team of researchers at ORNL demonstrated that a light-duty passenger electric vehicle can be wirelessly charged at 100-kW with 96% efficiency using polyphase electromagnetic coupling coils with rotating magnetic fields.

New system combines human, artificial intelligence to improve experimentation

To capitalize on AI and researcher strengths, scientists developed a human-AI collaboration recommender system for improved experimentation performance.