Skip to main content
Yue Yuan, Weinberg Distinguished Staff Fellow at ORNL, is researching ways to create new materials to help the environment. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Growing up in China, Yue Yuan stood beneath the world’s largest hydroelectric dam, built to harness the world’s third-longest river. Her father brought her to Three Gorges Dam every year as it was being constructed across the Yangtze River so she could witness its progress.

Consumers have a new resource for finding plug-in electric and fuel cell vehicle tax credits. Current owners and those considering an electric vehicle purchase can access a free tool developed by ORNL researchers for fueleconomy.gov. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have developed an online resource to help consumers understand the electric vehicle tax credits available through the Inflation Reduction Act.

Andrew Ullman, Distinguished Staff Fellow at Oak Ridge National Laboratory, is using chemistry to devise a better battery

Andrew Ullman, Distinguished Staff Fellow at Oak Ridge National Laboratory, is using chemistry to devise a better battery

Jeff Foster, Distinguished Staff Fellow at Oak Ridge National Laboratory, is looking for ways to control polymer sequencing for a variety of uses. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Chemist Jeff Foster is looking for ways to control sequencing in polymers that could result in designer molecules to benefit a variety of industries, including medicine and energy.

Researchers at Oak Ridge National Laboratory developed an eco-friendly foam insulation for improved building efficiency. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Scientists at ORNL developed a competitive, eco-friendly alternative made without harmful blowing agents.

Alice Perrin is a Distinguished Staff Fellow and materials scientist at Oak Ridge National Laboratory. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Alice Perrin is passionate about scientific research, but also beans — as in legumes.

Heat is typically carried through a material by vibrations known as phonons. In some crystals, however, different atomic motions — known as phasons — carry heat three times faster and farther. This illustration shows phasons made by rearranging atoms, shown by arrows. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Warming a crystal of the mineral fresnoite, ORNL scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.

ORNL researchers have developed a way to manage car batteries of different types and sizes as energy storage for the power grid. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

When aging vehicle batteries lack the juice to power your car anymore, they may still hold energy. Yet it’s tough to find new uses for lithium-ion batteries with different makers, ages and sizes. A solution is urgently needed because battery recycling options are scarce.

ORNL Weinberg Fellow Addis Fuhr uses quantum chemistry and machine learning methods to advance new materials. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

When Addis Fuhr was growing up in Bakersfield, California, he enjoyed visiting the mall to gaze at crystals and rocks in the gem store.

A team of ORNL researchers used neutron diffraction experiments to study the 3D-printed ACMZ alloy and observed a phenomenon called “load shuffling” that could inform the design of stronger, better-performing lightweight materials for vehicles. Credit: ORNL, U.S. Dept. of Energy

ORNL researchers have identified a mechanism in a 3D-printed alloy – termed “load shuffling” — that could enable the design of better-performing lightweight materials for vehicles.