Skip to main content
ORNL’s additive manufacturing compression molding, or AMCM, technology can produce composite-based, lightweight finished parts for airplanes, drones or vehicles in minutes and could acclerate decarbonization for the automobile and aeropsace industries. 

An Oak Ridge National Laboratory-developed advanced manufacturing technology, AMCM, was recently licensed by Orbital Composites and enables the rapid production of composite-based components, which could accelerate the decarbonization of vehicles

Benefit breakdown, 3D printed vs. wood molds

Oak Ridge National Laboratory researchers have conducted a comprehensive life cycle, cost and carbon emissions analysis on 3D-printed molds for precast concrete and determined the method is economically beneficial compared to conventional wood molds.

Steve Nolan, left, who manages many ORNL facilities for United Cleanup Oak Ridge, and Carl Dukes worked closely together to accommodate bringing members of the public into the Oak Ridge Reservation to collect distant images from overhead for the BRIAR biometric recognition project. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Carl Dukes’ career as an adept communicator got off to a slow start: He was about 5 years old when he spoke for the first time. “I’ve been making up for lost time ever since,” joked Dukes, a technical professional at the Department of Energy’s Oak Ridge National Laboratory.

Scientists conducted microbial DNA sampling at a Yellowstone National Park hot spring for a study sponsored by DOE’s Biological and Environmental Research program, the National Science Foundation and NASA. Credit: Mircea Podar/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists studied hot springs on different continents and found similarities in how some microbes adapted despite their geographic diversity.

Madhavi Martin portrait image

Madhavi Martin brings a physicist’s tools and perspective to biological and environmental research at the Department of Energy’s Oak Ridge National Laboratory, supporting advances in bioenergy, soil carbon storage and environmental monitoring, and even helping solve a murder mystery.

Mike Huettel

Mike Huettel is a cyber technical professional. He also recently completed the 6-month Cyber Warfare Technician course for the United States Army, where he learned technical and tactical proficiency leadership in operations throughout the cyber domain.

Ken Engle portrait

It was reading about current nuclear discoveries in textbooks that first made Ken Engle want to work at a national lab. It was seeing the real-world impact of the isotopes produced at ORNL 

 

Chlorella Vulgaris

In the search for ways to fight methylmercury in global waterways, scientists at Oak Ridge National Laboratory discovered that some forms of phytoplankton are good at degrading the potent neurotoxin.

Jerry Parks leads the Molecular Biophysics group at ORNL, leveraging his expertise in computational chemistry and bioinformatics to unlock the inner workings of proteins—molecules that govern cellular structure and function and are essential to life. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

When reading the novel Jurassic Park as a teenager, Jerry Parks found the passages about gene sequencing and supercomputers fascinating, but never imagined he might someday pursue such futuristic-sounding science.

Neutron scattering experiments at the Spallation Neutron Source revealed how the dynamics between copper and oxygen make a special type of enzyme excel at breaking down biomass. Insights could lead to lowering the cost of biofuel production. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Nonfood, plant-based biofuels have potential as a green alternative to fossil fuels, but the enzymes required for production are too inefficient and costly to produce. However, new research is shining a light on enzymes from fungi that could make biofuels economically viable.