Skip to main content
Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

After completing a bachelor’s degree in biology, Toya Beiswenger didn’t intend to go into forensics. But almost two decades later, the nuclear security scientist at ORNL has found a way to appreciate the art of nuclear forensics.

Stephen Dahunsi. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Stephen Dahunsi’s desire to see more countries safely deploy nuclear energy is personal. Growing up in Nigeria, he routinely witnessed prolonged electricity blackouts as a result of unreliable energy supplies. It’s a problem he hopes future generations won’t have to experience.

Philipe Ambrozio Dias. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Having lived on three continents spanning the world’s four hemispheres, Philipe Ambrozio Dias understands the difficulties of moving to a new place.

Thomaz Carvalhaes. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

In human security research, Thomaz Carvalhaes says, there are typically two perspectives: technocentric and human centric. Rather than pick just one for his work, Carvalhaes uses data from both perspectives to understand how technology impacts the lives of people.

ORNL physicist Libby Johnson demonstrated a new control panel at ORNL’s Bulk Shielding Facility in 1957. Among the first females to operate a nuclear reactor, Johnson blazed trails for women. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory physicist Elizabeth “Libby” Johnson (1921-1996), one of the world’s first nuclear reactor operators, standardized the field of criticality safety with peers from ORNL and Los Alamos National Laboratory.

Friederike (Rike) Bostelmann is a nuclear data and reactor physics analyst at Oak Ridge National Laboratory working to advance new technology for nuclear power reactors as a clean energy source for electricity generation. Credit: ORNL, Carlos Jones

Friederike (Rike) Bostelmann, who began her career in Germany, chose to come to ORNL to become part of the Lab’s efforts to shape the future of nuclear energy.

A 3D printed thermal protection shield, produced by ORNL researchers for NASA, is part of a cargo spacecraft bound for the International Space Station. The shield was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL. Credit: ORNL, U.S. Dept. of Energy

A research team at Oak Ridge National Laboratory have 3D printed a thermal protection shield, or TPS, for a capsule that will launch with the Cygnus cargo spacecraft as part of the supply mission to the International Space Station.

Deborah Frincke, one of the nation’s preeminent computer scientists and cybersecurity experts, serves as associate laboratory director of ORNL’s National Security Science Directorate. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Deborah Frincke, one of the nation’s preeminent computer scientists and cybersecurity experts, serves as associate laboratory director of ORNL’s National Security Science Directorate. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL researchers combined additive manufacturing with conventional compression molding to produce high-performance thermoplastic composites, demonstrating the potential for the use of large-scale multimaterial preforms to create molded composites. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers combined additive manufacturing with conventional compression molding to produce high-performance thermoplastic composites reinforced with short carbon fibers.

ORNL researchers are developing a method to print low-cost, high-fidelity, customizable sensors for monitoring power grid equipment. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A method developed at Oak Ridge National Laboratory to print high-fidelity, passive sensors for energy applications can reduce the cost of monitoring critical power grid assets.