Skip to main content
Man in blue shirt and grey pants holds laptop and poses next to a green plant in a lab.

John Lagergren, a staff scientist in Oak Ridge National Laboratory’s Plant Systems Biology group, is using his expertise in applied math and machine learning to develop neural networks to quickly analyze the vast amounts of data on plant traits amassed at ORNL’s Advanced Plant Phenotyping Laboratory.

Red background fading into black from top to bottom. Over top the background are 20 individual rectangles lined up in three rows horizontally with a red and blue line moving through it.

ORNL scientists develop a sample holder that tumbles powdered photochemical materials within a neutron beamline exposing more of the material to light for increased photo-activation and better photochemistry data capture.

A tan and black cylinder that is made up of three long tubes vertically with a black line horizontally going across the bottom and the top. There is a piece laying on the floor that says ORNL.

ORNL researchers used electron-beam additive manufacturing to 3D-print the first complex, defect-free tungsten parts with complex geometries. 

Howard Wilson

Howard Wilson explores how to accelerate the delivery of fusion energy as Fusion Pilot Plant R&D lead at ORNL. Wilson envisions a fusion hub with ORNL at the center, bringing together the lab's unique expertise and capabilities with domestic and international partnerships to realize the potential of fusion energy.

Alyssa Carrell is an ORNL ecologist studying how plant-microbe relationships can build resilience in natural ecosystems vulnerable to climate change. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Alyssa Carrell started her science career studying the tallest inhabitants in the forest, but today is focused on some of its smallest — the microbial organisms that play an outsized role in plant health. 

ORNL engineer Canan Karakaya uses computational modeling to design and improve chemical reactors and how they are operated to convert methane, carbon dioxide, ammonia or ethanol into higher-value chemicals or energy-dense fuels. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Canan Karakaya, a R&D Staff member in the Chemical Process Scale-Up group at ORNL, was inspired to become a chemical engineer after she experienced a magical transformation that turned ammonia gas into ammonium nitrate, turning a liquid into white flakes gently floating through the air. 

Two hybrid poplar plants, middle and right, engineered with the PtrXB38 hub gene exhibited a drastic increase in root and callus formation compared with a wild-type control plant, left. Credit: Tao Yao/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists identified a gene “hotspot” in the poplar tree that triggers dramatically increased root growth. The discovery supports development of better bioenergy crops and other plants that can thrive in difficult conditions while storing more carbon belowground.

Scientists conducted microbial DNA sampling at a Yellowstone National Park hot spring for a study sponsored by DOE’s Biological and Environmental Research program, the National Science Foundation and NASA. Credit: Mircea Podar/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists studied hot springs on different continents and found similarities in how some microbes adapted despite their geographic diversity.

Madhavi Martin portrait image

Madhavi Martin brings a physicist’s tools and perspective to biological and environmental research at the Department of Energy’s Oak Ridge National Laboratory, supporting advances in bioenergy, soil carbon storage and environmental monitoring, and even helping solve a murder mystery.

Chlorella Vulgaris

In the search for ways to fight methylmercury in global waterways, scientists at Oak Ridge National Laboratory discovered that some forms of phytoplankton are good at degrading the potent neurotoxin.