Skip to main content
Christian Salvador is studying natural and manmade aerosols at Oak Ridge National Laboratory to improve our understanding of how atmospheric pollutants affect ecosystems and the Earth’s climate. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

While completing his undergraduate studies in the Philippines, atmospheric chemist Christian Salvador caught a glimpse of the horizon. What he saw concerned him: a thin, black line hovering above the city.

Bob Bolton has spent much of his career studying environmental change in Alaska. He recently moved to East Tennessee to join the ORNL-led NGEE Arctic project as deputy for operations. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Bob Bolton may have moved to a southerly latitude at ORNL, but he is still stewarding scientific exploration in the Arctic, along with a project that helps amplify the voices of Alaskans who reside in a landscape on the front lines of climate change.

Researchers used the open-source Community Earth System Model to simulate the effects that extreme climatic conditions have on processes like land carbon storage. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers from Oak Ridge National Laboratory and Northeastern University modeled how extreme conditions in a changing climate affect the land’s ability to absorb atmospheric carbon — a key process for mitigating human-caused emissions. They found that 88% of Earth’s regions could become carbon emitters by the end of the 21st century. 

Madhavi Martin portrait image

Madhavi Martin brings a physicist’s tools and perspective to biological and environmental research at the Department of Energy’s Oak Ridge National Laboratory, supporting advances in bioenergy, soil carbon storage and environmental monitoring, and even helping solve a murder mystery.

Climate change often comes down to how it affects water, whether it’s for drinking, electricity generation, or how flooding affects people and infrastructure. To better understand these impacts, ORNL water resources engineer Sudershan Gangrade is integrating knowledge ranging from large-scale climate projections to local meteorology and hydrology and using high-performance computing to create a holistic view of the future.

Climate change often comes down to how it affects water, whether it’s for drinking, electricity generation, or how flooding affects people and infrastructure. To better understand these impacts, ORNL water resources engineer Sudershan Gangrade is integrating knowledge ranging from large-scale climate projections to local meteorology and hydrology and using high-performance computing to create a holistic view of the future.

Jeff Foster, Distinguished Staff Fellow at Oak Ridge National Laboratory, is looking for ways to control polymer sequencing for a variety of uses. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Chemist Jeff Foster is looking for ways to control sequencing in polymers that could result in designer molecules to benefit a variety of industries, including medicine and energy.

Researchers at Oak Ridge National Laboratory developed an eco-friendly foam insulation for improved building efficiency. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Scientists at ORNL developed a competitive, eco-friendly alternative made without harmful blowing agents.

Heat is typically carried through a material by vibrations known as phonons. In some crystals, however, different atomic motions — known as phasons — carry heat three times faster and farther. This illustration shows phasons made by rearranging atoms, shown by arrows. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Warming a crystal of the mineral fresnoite, ORNL scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.

When an electron beam drills holes in heated graphene, single-atom vacancies, shown in purple, diffuse until they join with other vacancies to form stationary structures and chains, shown in blue. Credit: Ondrej Dyck/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers serendipitously discovered when they automated the beam of an electron microscope to precisely drill holes in the atomically thin lattice of graphene, the drilled holes closed up.

Jack Cahill of ORNL’s Biosciences Division is developing new techniques to view and measure the previously unseen to better understand important chemical processes at play in plant-microbe interactions and in human health. In this photo, Cahill is positioning a rhizosphere-on-a-chip platform for imaging by mass spectrometry. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

John “Jack” Cahill is out to illuminate previously unseen processes with new technology, advancing our understanding of how chemicals interact to influence complex systems whether it’s in the human body or in the world beneath our feet.