Skip to main content

News

Dignitaries at announcement of EPB and Oak Ridge National Lab quantum science and energy resilience event

EPB and ORNL marked 10 years of collaboration with the announcement of the new Collaborative for Energy Resilience and Quantum Science. The new joint research effort will focus on utilizing Chattanooga’s highly advanced and integrated energy and communications infrastructure to develop technologies and best practices for enhancing the resilience and security of the national power grid while accelerating the commercialization of quantum technologies. 

ORNL's Kyle Gluesenkamp received the FLC Outstanding Researcher Award.

Four ORNL teams and one researcher were recognized for excellence in technology transfer and technology transfer innovation. 
 

Researchers at Corning have found that understanding the stability of the rings of atoms in glass materials can help predict the performance of glass products.

Corning uses neutron scattering to study the stability of different types of glass. Recently, researchers for the company have found that understanding the stability of the rings of atoms in glass materials can help predict the performance of glass products.

The illustration depicts ocean surface currents simulated by MPAS-Ocean. Credit: Los Alamos National Laboratory, E3SM, U.S. Dept. of Energy

A team from DOE’s Oak Ridge, Los Alamos and Sandia National Laboratories has developed a new solver algorithm that reduces the total run time of the Model for Prediction Across Scales-Ocean, or MPAS-Ocean, E3SM’s ocean circulation model, by 45%. 

Gina Tourassi. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy 

Effective Dec. 4, Gina Tourassi will assume responsibilities as associate laboratory director for the Computing and Computational Sciences Directorate at the Department of Energy’s Oak Ridge National Laboratory.

Ramesh Bhave in lab

Caldera Holding, the owner and developer of Missouri’s Pea Ridge iron mine, has entered a nonexclusive research and development licensing agreement with ORNL to apply a membrane solvent extraction technique, or MSX, developed by ORNL researchers to mined ores.

Conceptual art depicts machine learning finding an ideal material for capacitive energy storage. Its carbon framework (black) has functional groups with oxygen (pink) and nitrogen (turquoise). Credit: Tao Wang/ORNL, U.S. Dept. of Energy

Guided by machine learning, chemists at ORNL designed a record-setting carbonaceous supercapacitor material that stores four times more energy than the best commercial material.

An illustration of the lattice examined by Phil Anderson in the early ‘70s. Shown as green ellipses, pairs of quantum particles fluctuated among multiple combinations to produce a spin liquid state.

A team of researchers associated with the Quantum Science Center headquartered at the Department of Energy's Oak Ridge National Laboratory has confirmed the presence of quantum spin liquid behavior in a new material with a triangular lattice, KYbSe2.

Logo that reads U.S. Department of Energy INCITE Leadership Computing

The Department of Energy’s Office of Science has allocated supercomputer access to a record-breaking 75 computational science projects for 2024 through its Innovative and Novel Computational Impact on Theory and Experiment, or INCITE, program. DOE is awarding 60% of the available time on the leadership-class supercomputers at DOE’s Argonne and Oak Ridge National Laboratories to accelerate discovery and innovation. 

An electromagnetic pulse, or EMP, can be triggered by a nuclear explosion in the atmosphere or by an electromagnetic generator in a vehicle or aircraft. Here’s the chain of reactions it could cause to harm electrical equipment on the ground. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at ORNL have been leading a project to understand how a high-altitude electromagnetic pulse, or EMP, could threaten power plants.