Skip to main content
: ORNL climate modeling expertise contributed to an AI-backed model that assesses global emissions of ammonia from croplands now and in a warmer future, while identifying mitigation strategies. This map highlights croplands around the world. Credit: U.S. Geological Survey

ORNL climate modeling expertise contributed to a project that assessed global emissions of ammonia from croplands now and in a warmer future, while also identifying solutions tuned to local growing conditions.

Ilenne Del Valle is merging her expertise in synthetic biology and environmental science to develop new technologies to help scientists better understand and engineer ecosystems for climate resilience. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

Ilenne Del Valle is merging her expertise in synthetic biology and environmental science to develop new technologies to help scientists better understand and engineer ecosystems for climate resilience. 

ORNL Associate Laboratory Director for Computing and Computational Sciences. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Gina Tourassi, associate laboratory director for computing and computational sciences at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory, has been named a fellow of the Institute of Electrical and Electronics Engineers, the world’s largest organization for technical professionals.

Louise Stevenson uses her expertise as an environmental toxicologist to evaluate the effects of stressors such as chemicals and other contaminants on aquatic systems. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

Louise Stevenson uses her expertise as an environmental toxicologist to evaluate the effects of stressors such as chemicals and other contaminants on aquatic systems.

Researchers at Corning have found that understanding the stability of the rings of atoms in glass materials can help predict the performance of glass products.

Corning uses neutron scattering to study the stability of different types of glass. Recently, researchers for the company have found that understanding the stability of the rings of atoms in glass materials can help predict the performance of glass products.

Caption: Jaswinder Sharma makes battery coin cells with a lightweight current collector made of thin layers of aligned carbon fibers in a polymer with carbon nanotubes. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Electric vehicles can drive longer distances if their lithium-ion batteries deliver more energy in a lighter package. A prime weight-loss candidate is the current collector, a component that often adds 10% to the weight of a battery cell without contributing energy.

ORNL scientist Zhijia Du, white coat, former ORNL scientist Jianlin Li, blue coat, and Ateios CEO Rajan Kumar inspect battery components during a pilot production run. Credit: Kurt Weiss/ORNL, U.S. Dept of Energy

Ateios Systems licensed an ORNL technology for solvent-free battery component production using electron curing. Through Innovation Crossroads, Ateios continues to work with ORNL to enable readiness for production-quality battery components. 

Alex May, pictured above, is the first and only full-time data curator at the Department of Energy’s Oak Ridge Leadership Computing Facility. Credit: Carlos Jones and Wikimedia Commons, background/ORNL, U.S. Dept. of Energy
Alex May is the first and only full-time data curator at the Department of Energy’s Oak Ridge Leadership Computing Facility, evaluating datasets developed by computational scientists before they are made public through the OLCF’s Constellation portal for open data exchange.
Debjani Pal’s photo “Three-Dimensional Breast Cancer Spheroids” won the Director’s Choice Award in Oak Ridge National Laboratory’s Art of Science photo competition. It will be displayed at the American Museum of Science and Energy in Oak Ridge, Tenn. Credit: Debjani Pal/ORNL, U.S. Dept. of Energy
“Three-Dimensional Breast Cancer Spheroids” submitted by radiotherapeutics researcher Debjani Pal is stunning. Brilliant blue dots pop from an electric sphere threaded with bright colors: greens, aqua, hot pink and red.
Mat Doucet, left, of Oak Ridge National Laboratory and Sarah Blair of the National Renewable Energy Lab used neutrons to understand an electrochemical way to produce ammonia

Scientists from Stanford University and the Department of Energy’s Oak Ridge National Laboratory are turning air into fertilizer without leaving a carbon footprint. Their discovery could deliver a much-needed solution to help meet worldwide carbon-neutral goals by 2050.