Skip to main content
Scientists from LanzaTech, Northwestern University and Oak Ridge National Laboratory engineered a microbe, shown in light blue, to convert molecules of industrial waste gases, such as carbon dioxide and carbon monoxide, into acetone. The same microbe can also make isopropanol. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

A team of scientists from LanzaTech, Northwestern University and ORNL have developed carbon capture technology that harnesses emissions from industrial processes to produce acetone and isopropanol

An artist's rendering of the Ultium Cells battery cell production facility to be built in Spring Hill, Tennessee, which will employ 1,300 people. Recognizing the unique expertise of their organizations, ORNL, TVA, and the Tennessee Department of Economic and Community Development have been working together for several years to bring startups developing battery technologies for EVs and established automotive firms to Tennessee. Credit: Ultium Cells

ORNL, TVA and TNECD were recognized by the Federal Laboratory Consortium for their impactful partnership that resulted in a record $2.3 billion investment by Ultium Cells, a General Motors and LG Energy Solution joint venture, to build a battery cell manufacturing plant in Spring Hill, Tennessee.

ORNL’s biosensor system reveals CRISPR activity in poplar plants, which glow bright green under ultraviolet light, compared to normal plants, which appear red. Credit: Guoliang Yuan/ORNL, U.S. Dept. of Energy

Detecting the activity of CRISPR gene editing tools in organisms with the naked eye and an ultraviolet flashlight is now possible using technology developed at ORNL. 

Distinguished Inventors

Six scientists at the Department of Energy’s Oak Ridge National Laboratory were named Battelle Distinguished Inventors, in recognition of obtaining 14 or more patents during their careers at the lab.

ORNL scientists have optimized the Pseudomonas putida bacterium to digest five of the most abundant components of lignocellulosic biomass simultaneously, supporting a highly efficient conversion process to create renewable fuels and chemicals from plants. Credit: Alli Werner/NREL,U.S. Dept of Energy

ORNL scientists have modified a single microbe to simultaneously digest five of the most abundant components of lignocellulosic biomass, a big step forward in the development of a cost-effective biochemical conversion process to turn plants into