Skip to main content
Graphical representation of a deuteron, the bound state of a proton (red) and a neutron (blue). Credit: Andy Sproles/Oak Ridge National Laboratory, U.S. Dept. of Energy.

Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Physical Review Letters, demonstrate the ability of quantum systems to compute nuclear ph...

COHERENT collaborators were the first to observe coherent elastic neutrino–nucleus scattering. Their results, published in the journal Science, confirm a prediction of the Standard Model and establish constraints on alternative theoretical models. Image c

After more than a year of operation at the Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL), the COHERENT experiment, using the world’s smallest neutrino detector, has found a big fingerprint of the elusive, electrically neutral particles that interact only weakly with matter.

Gerald Tuskan will serve as Chief Executive Officer of the new ORNL-led Center for Bioenergy Innovation, one of four DOE bioenergy research centers.

The Department of Energy has announced funding for new research centers to accelerate the development of specialty plants and processes for a new generation of biofuels and bioproducts. The Center for Bioenergy Innovation (CBI), led by Oak Ridge National Laboratory...

Manufacturing_tailoring_performance

A new manufacturing method created by Oak Ridge National Laboratory and Rice University combines 3D printing with traditional casting to produce damage-tolerant components composed of multiple materials. Composite components made by pouring an aluminum alloy over a printed steel lattice showed an order of magnitude greater damage tolerance than aluminum alone.

This isotropic, neodymium-iron-boron bonded permanent magnet was 3D-printed at DOE’s Manufacturing Demonstration Facility at Oak Ridge National Laboratory.

Researchers at the Department of Energy’s Oak Ridge National Laboratory have demonstrated that permanent magnets produced by additive manufacturing can outperform bonded magnets made using traditional techniques while conserving critical materials. Scientists fabric...

ORNL Director Thom Mason (left) and Thomas Roberts of Oddello Industries LLC sign a research and development agreement.

A process developed at Oak Ridge National Laboratory for large-scale recovery of rare earth magnets from used computer hard drives will undergo industrial testing under a new agreement between Oddello Industries LLC and ORNL, as part of the Department of Energy’s Crit...

ORNL researchers are developing an idealized collector molecule that has a shape complementary to the surface atomic structure of xenotime, a rare earth yttrium-rich phosphate mineral.

Ensuring a reliable supply of rare earth elements, including four key lanthanides and yttrium, is a major goal of the Critical Materials Institute (https://cmi.ameslab.gov) as these elements are essential to many clean-energy technologies. These include energy-efficient lighting, ...

Default image of ORNL entry sign

A new technology developed by the U.S. Department of Energy’s Critical Materials Institute that aids in the recycling, recovery and extraction of rare earth minerals has been licensed to U.S. Rare Earths, Inc.

Default image of ORNL entry sign

An alloy discovered at Oak Ridge National Laboratory holds great promise for permanent magnets as the material retains its magnetic properties at higher temperatures yet contains no rare-earth elements. This finding is significant because while rare-earth-based magnets are critical to alternative ...

Default image of ORNL entry sign

Through a network that consists of hundreds of low-cost monitors that plug into standard 110-volt outlets, GridEye can play a role in ensuring the reliability of the nation's power grids. The system, developed by researchers at Oak Ridge National Laboratory, provides real-time information about dyna...