Skip to main content
New research predicts peak groundwater extraction for key basins around the globe by the year 2050. The map indicates groundwater storage trends for Earth’s 37 largest aquifers using data from the NASA Jet Propulsion Laboratory GRACE satellite. Credit: NASA.

Groundwater withdrawals are expected to peak in about one-third of the world’s basins by 2050, potentially triggering significant trade and agriculture shifts, a new analysis finds. 

An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries. Credit: Phoenix Pleasant/ORNL

An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries.

ORNL postdoctoral research associate Alex Miloshevsky presents his novel research in quantum networks at the 2024 OFC conference.

ORNL was front and center recently at one of the world’s largest optical networking conferences, the 2024 Optic Fiber Communication Conference and Exhibition, or OFC. ORNL researchers had major roles at the OFC 2024, a three-day event held in San Diego, California from March 26-28 which featured thousands of the world’s leading optical communications and networking professionals. 

Jens Dilling has been named associate laboratory director for the Neutron Sciences Directorate at the Department of Energy’s Oak Ridge National Laboratory, effective April 1.

Jens Dilling has been named associate laboratory director for the Neutron Sciences Directorate at the Department of Energy’s Oak Ridge National Laboratory, effective April 1.

Chuck Greenfield, former assistant director of the DII-D National Fusion Program at General Atomics, has joined ORNL as ITER R&D Lead.

Chuck Greenfield, former assistant director of the DIII-D National Fusion Program at General Atomics, has joined ORNL as ITER R&D Lead. 
 

New system combines human, artificial intelligence to improve experimentation

To capitalize on AI and researcher strengths, scientists developed a human-AI collaboration recommender system for improved experimentation performance. 

Mat Doucet, left, of Oak Ridge National Laboratory and Sarah Blair of the National Renewable Energy Lab used neutrons to understand an electrochemical way to produce ammonia

Scientists from Stanford University and the Department of Energy’s Oak Ridge National Laboratory are turning air into fertilizer without leaving a carbon footprint. Their discovery could deliver a much-needed solution to help meet worldwide carbon-neutral goals by 2050.

Gina Tourassi. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy 

Effective Dec. 4, Gina Tourassi will assume responsibilities as associate laboratory director for the Computing and Computational Sciences Directorate at the Department of Energy’s Oak Ridge National Laboratory.

Conceptual art depicts machine learning finding an ideal material for capacitive energy storage. Its carbon framework (black) has functional groups with oxygen (pink) and nitrogen (turquoise). Credit: Tao Wang/ORNL, U.S. Dept. of Energy

Guided by machine learning, chemists at ORNL designed a record-setting carbonaceous supercapacitor material that stores four times more energy than the best commercial material.

An illustration of the lattice examined by Phil Anderson in the early ‘70s. Shown as green ellipses, pairs of quantum particles fluctuated among multiple combinations to produce a spin liquid state.

A team of researchers associated with the Quantum Science Center headquartered at the Department of Energy's Oak Ridge National Laboratory has confirmed the presence of quantum spin liquid behavior in a new material with a triangular lattice, KYbSe2.