Skip to main content
Researchers have shown how an all-solid lithium-based electrolyte material can be used to develop fast charging, long-range batteries for electric vehicles that are also safer than conventional designs. Credit: ORNL, U.S. Dept. of Energy

Currently, the biggest hurdle for electric vehicles, or EVs, is the development of advanced battery technology to extend driving range, safety and reliability.

Oak Ridge National Laboratory entrance sign

The Department of Energy’s Office of Science has selected three ORNL research teams to receive funding through DOE’s new Biopreparedness Research Virtual Environment initiative.

Neutron scattering experiments at the Spallation Neutron Source revealed how the dynamics between copper and oxygen make a special type of enzyme excel at breaking down biomass. Insights could lead to lowering the cost of biofuel production. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Nonfood, plant-based biofuels have potential as a green alternative to fossil fuels, but the enzymes required for production are too inefficient and costly to produce. However, new research is shining a light on enzymes from fungi that could make biofuels economically viable.

Paul Langan will oversee ORNL's research directorate focused on biological and environmental systems science. Credit: ORNL, U.S. Dept. of Energy

Paul Langan will join ORNL in the spring as associate laboratory director for the Biological and Environmental Systems Science Directorate.

ORNL scientists used an electron beam for precision machining of nanoscale materials. Cubes were milled to change their shape and could also be removed from an array. Credit: Kevin Roccapriore/ORNL, U.S. Dept. of Energy

Drilling with the beam of an electron microscope, scientists at ORNL precisely machined tiny electrically conductive cubes that can interact with light and organized them in patterned structures that confine and relay light’s electromagnetic signal.

An ORNL research team is investigating new catalysts for ethanol conversion that could advance the cost-effective production of renewable transportation. Credit: Unsplash

Oak Ridge National Laboratory researchers have developed a new catalyst for converting ethanol into C3+ olefins – the chemical

Researchers built optical tools called zero-mode waveguides, illustrated here, used to observe proteins that are implicated in human heart function. Credit: David S. White/University of Wisconsin-Madison

Researchers working with Oak Ridge National Laboratory developed a new method to observe how proteins, at the single-molecule level, bind with other molecules and more accurately pinpoint certain molecular behavior in complex

An international research team used scanning tunneling microscopy at ORNL to send and receive single molecules across a surface on an atomically precise track. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences contributed to a groundbreaking experiment published in Science that tracks the real-time transport of individual molecules.

ORNL is designing a neutronic research engine to evaluate new materials and designs for advanced vehicles using the facilities at the Spallation Neutron Source at ORNL. Credit: Jill Hemman/ORNL, U.S. Dept of Energy, and  Southwest Research Institute.

In the quest for advanced vehicles with higher energy efficiency and ultra-low emissions, ORNL researchers are accelerating a research engine that gives scientists and engineers an unprecedented view inside the atomic-level workings of combustion engines in real time.

ORNL researchers have developed a new class of cobalt-free cathodes called NFA that are being investigated for making lithium-ion batteries for electric vehicles. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have developed a new family of cathodes with the potential to replace the costly cobalt-based cathodes typically found in today’s lithium-ion batteries that power electric vehicles and consumer electronics.