Skip to main content
Sam Hollifield displays a prototype of the Secure Hijack, Intrusion and Exploit Layered Detector, or SHIELD, the device monitoring the cybersecurity of the semi-truck. Credit: Lena Shoemaker/ORNL, U.S. Dept. of Energy

As vehicles gain technological capabilities, car manufacturers are using an increasing number of computers and sensors to improve situational awareness and enhance the driving experience.

The OpeN-AM experimental platform, installed at the VULCAN instrument at ORNL’s Spallation Neutron Source, features a robotic arm that prints layers of molten metal to create complex shapes. This allows scientists to study 3D printed welds microscopically. Credit: Jill Hemman, ORNL/U.S. Dept. of Energy

Using neutrons to see the additive manufacturing process at the atomic level, scientists have shown that they can measure strain in a material as it evolves and track how atoms move in response to stress.

ytterbium

ORNL’s electromagnetic isotope separator, or EMIS, made history in 2018 when it produced 500 milligrams of the rare isotope ruthenium-96, unavailable anywhere else in the world. 

Jason Gardner, Sandra Davern and Peter Thornton have been elected fellows of AAAS. Credit: Laddy Fields/ORNL, U.S. Dept. of Energy

Three scientists from the Department of Energy’s Oak Ridge National Laboratory have been elected fellows of the American Association for the Advancement of Science, or AAAS.

State and Local Economic Development Award

A partnership of ORNL, the Tennessee Department of Economic and Community Development, the Community Reuse Organization of East Tennessee and TVA that aims to attract nuclear energy-related firms to Oak Ridge has been recognized with a state and local economic development award from the Federal Laboratory Consortium.

Researchers at Oak Ridge National Laboratory probed the chemistry of radium to gain key insights on advancing cancer treatments using radiation therapy. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at ORNL explored radium’s chemistry to advance cancer treatments using ionizing radiation.

Three ORNL scientists have been elected fellows of the American Association for the Advancement of Science, or AAAS, the world’s largest general scientific society and publisher of the Science family of journals. Credit: ORNL, U.S. Dept. of Energy

Three ORNL scientists have been elected fellows of the American Association for the Advancement of Science, or AAAS, the world’s largest general scientific society and publisher of the Science family of journals.

Ashleigh Kimberlin and Mikayla Molnar achieve success with a gas-trapping apparatus for Ac-225 production. Credit: ORNL, U.S. Dept. of Energy

In experiment after experiment, the synthetic radioisotope actinium-225 has shown promise for targeting and attacking certain types of cancer cells.

Initially, Kevin Gaddis’s adapted HPIC will be used only for the fourth of six separations in  actinium-225 processing, but he hopes it will later be used for other separations — and other isotopes. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

An Oak Ridge National Laboratory researcher has invented a version of an isotope-separating device that can withstand extreme environments, including radiation and chemical solvents.

Targeted alpha therapy can deliver radiation to specific cells, with minimal effect on surrounding, healthy cells. Credit: Michelle Lehman and Jaimee Janiga/ORNL, U.S. Dept. of Energy

A rare isotope in high demand for treating cancer is now more available to pharmaceutical companies developing and testing new drugs.