Skip to main content
Mohamad Zineddin

Mohamad Zineddin hopes to establish an interdisciplinary center of excellence for nuclear security at ORNL, combining critical infrastructure assessment and protection, risk mitigation, leadership in nuclear security, education and training, nuclear security culture and resilience strategies and techniques.

As a chemical engineer focusing on low-carbon energy sources like hydrogen, Cheekatamarla’s research at ORNL supports the deployment of clean energy technologies in buildings and industries. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Cheekatamarla is a researcher in the Multifunctional Equipment Integration group with previous experience in product deployment. He is researching alternative energy sources such as hydrogen for cookstoves and his research supports the decarbonization of building technologies. 

ORNL’s Alexey Serov will serve as a deputy director of the R2R Consortium. Credit: Carlos Jones/ORNL, US Department of Energy

The Department of Energy’s Oak Ridge National Laboratory is providing national leadership in a new collaboration among five national laboratories to accelerate U.S. production of clean hydrogen fuel cells and electrolyzers.  

ORNL engineer Canan Karakaya uses computational modeling to design and improve chemical reactors and how they are operated to convert methane, carbon dioxide, ammonia or ethanol into higher-value chemicals or energy-dense fuels. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Canan Karakaya, a R&D Staff member in the Chemical Process Scale-Up group at ORNL, was inspired to become a chemical engineer after she experienced a magical transformation that turned ammonia gas into ammonium nitrate, turning a liquid into white flakes gently floating through the air. 

The operating phases of an eVTOL need varying amounts of power; some require the battery to discharge high amounts of current rapidly, reducing the distance the vehicle can travel before its battery must be recharged. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at ORNL are taking cleaner transportation to the skies by creating and evaluating new batteries for airborne electric vehicles that take off and land vertically. 

ORNL researchers achieved the highest wireless power transfer level for a light-duty passenger vehicle when the team demonstrated a 100-kW wireless power transfer to an EV using ORNL’s patented polyphase electromagnetic coupling coil. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

A team of researchers at ORNL demonstrated that a light-duty passenger electric vehicle can be wirelessly charged at 100-kW with 96% efficiency using polyphase electromagnetic coupling coils with rotating magnetic fields.

Fengqi “Frank” Li brings computational and architectural expertise to building energy modeling in ORNL’s Grid Interactive Controls group. Genevieve Martin/ORNL, U.S. Dept. of Energy

Although he built his career around buildings, Fengqi “Frank” Li likes to break down walls. Li was trained as an architect, but he doesn’t box himself in. Currently he is working as a computational developer at ORNL. But Li considers himself a designer. To him, that’s less a box than a plane – a landscape scattered with ideas, like destinations on a map that can be connected in different ways. 

ORNL

Two different teams that included Oak Ridge National Laboratory employees were honored Feb. 20 with Secretary’s Honor Achievement Awards from the Department of Energy. This is DOE's highest form of employee recognition. 

Chelsea Chen, polymer physicist at ORNL, stands in front of an eight-channel potentiostat and temperature chamber used for battery and electrochemical testing. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Chelsea Chen, a polymer physicist at ORNL, is studying ion transport in solid electrolytes that could help electric vehicle battery charges last longer.

An encapsulation system developed by ORNL researchers prevents salt hydrates, which are environmentally friendly thermal energy storage materials, from leaking and advances their use in heating and cooling applications. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

ORNL researchers have developed a novel way to encapsulate salt hydrate phase-change materials within polymer fibers through a coaxial pulling process. The discovery could lead to the widespread use of the low-carbon materials as a source of insulation for a building’s envelope.