Skip to main content
ORNL nuclear engineer Chris Petrie

Oak Ridge National Laboratory is using ultrasonic additive manufacturing to embed highly accurate fiber optic sensors in heat- and radiation-resistant materials, allowing for real-time monitoring that could lead to greater insights and safer reactors.

Nuclear—Deep space travel

By automating the production of neptunium oxide-aluminum pellets, Oak Ridge National Laboratory scientists have eliminated a key bottleneck when producing plutonium-238 used by NASA to fuel deep space exploration.

Picture2.png

Oak Ridge National Laboratory scientists studying fuel cells as a potential alternative to internal combustion engines used sophisticated electron microscopy to investigate the benefits of replacing high-cost platinum with a lower cost, carbon-nitrogen-manganese-based catalyst.

exp_in_10_dry_tube.jpg

Scientists from Oak Ridge National Laboratory performed a corrosion test in a neutron radiation field to support the continued development of molten salt reactors.

ORNL is again hosting a workshop focused on the next generation of molten salt reactors.

Experts focused on the future of nuclear technology will gather at Oak Ridge National Laboratory for the fourth annual Molten Salt Reactor Workshop on October 3–4.

Manufacturing_tailoring_performance

A new manufacturing method created by Oak Ridge National Laboratory and Rice University combines 3D printing with traditional casting to produce damage-tolerant components composed of multiple materials. Composite components made by pouring an aluminum alloy over a printed steel lattice showed an order of magnitude greater damage tolerance than aluminum alone.

Default image of ORNL entry sign

Scientists of the Next-Generation Ecosystem Experiments are blogging from the Arctic this summer. Follow their adventures at http://ngee-arctic.blogspot.com/. Participants share troubles and triumphs from the field in entries with headings like "Flying Wild Alaska" and "Hitting the Tundra." "The b...