Skip to main content
ORNL Image
Scientists at the US Department of Energy’s Oak Ridge National Laboratory are learning how the properties of water molecules on the surface of metal oxides can be used to better control these minerals and use them to make products such as more efficient semiconductors for organic light emitting diodes and solar cells, safer vehicle glass in fog and frost, and more environmentally friendly chemical sensors for industrial applications.
ORNL Image
Enzymes are catalysts that speed up chemical reactions in living organisms and control many cellular biological processes by converting a molecule, or substrate, into a product used by the cell. For scientists, understanding details of how enzymes work is essential to the discovery of drugs to cure diseases and treat disorders.
ORNL Image
Researchers at the Department of Energy’s Oak Ridge National Laboratory, working collaboratively with scientists funded by The American Chestnut Foundation, have helped confirm that addition of a wheat gene increases the blight resistance of American chestnut trees.
Default image of ORNL entry sign
Ethers—simple organic molecules in which an oxygen atom bridges two carbon atoms—are the chemical building blocks of commonplace products including many solvents, propellants, cosmetics and pharmaceuticals. Link them together in large molecular rings and they become scientific royalty—crown ether molecules, whose development led in large part to the 1987 Nobel Prize in chemistry.
ORNL Image
If you took a photograph of the Milky Way galaxy today from a distance, the photo would show a spiral galaxy with a bright, central bar (sometimes called a bulge) of dense star populations.
ORNL Image
For several years, the Department of Energy’s Oak Ridge National Laboratory has supported the National Guard and Reserve’s Boss Lift Program, which gives employers a chance to visit military installations to see first-hand what reservists do.
ORNL Image
When Department of Energy and Oak Ridge National Laboratory researcher Yan Xu talks about “islanding,” or isolating, from the grid, she’s discussing a fundamental benefit of microgrids—small systems powered by renewables and energy storage devices. The benefit is that microgrids can disconnect from larger utility grids and continue to provide power locally.
ORNL Image
Researchers studying iron-based superconductors are combining novel electronic structure algorithms with the high-performance computing power of the Department of Energy’s Titan supercomputer at Oak Ridge National Laboratory to predict spin dynamics, or the ways electrons orient and correlate their spins in a material.
Default image of ORNL entry sign
Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not only stays intact but also may drive the ball farther than conventional clubs. In light of this contrast, the nature of glass seems anything but clear.
ORNL Image
(SALT LAKE CITY)—Using X-rays and neutron beams, a team of researchers from the University of Utah, University of California, San Diego School of Medicine and Oak Ridge National Laboratory have revealed the inner workings of a master switch that regulates basic cellular functions, but that also, when mutated, contributes to cancer, cardiovascular disease and other deadly disorders.