Skip to main content
The DEMAND single crystal diffractometer at the High Flux Isotope Reactor, or HFIR, is the latest neutron instrument at the Department of Energy’s Oak Ridge National Laboratory to be equipped with machine learning-assisted software, called ReTIA. Credit: Jeremy Rumsey/ORNL, U.S. Dept. of Energy

Neutron experiments can take days to complete, requiring researchers to work long shifts to monitor progress and make necessary adjustments. But thanks to advances in artificial intelligence and machine learning, experiments can now be done remotely and in half the time.

small power module

Researchers at the Department of Energy’s Oak Ridge National Laboratory are supporting the grid by improving its smallest building blocks: power modules that act as digital switches.

NASA scientist Andrew Needham used the MARS neutron imaging instrument at Oak Ridge National Laboratory to study moon rock samples brought back from the Apollo missions. Credit: Jeremy Rumsey/ORNL, U.S. Dept. of Energy

How did we get from stardust to where we are today? That’s the question NASA scientist Andrew Needham has pondered his entire career.

Researchers at Oak Ridge National Laboratory developed an eco-friendly foam insulation for improved building efficiency. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Scientists at ORNL developed a competitive, eco-friendly alternative made without harmful blowing agents.

ORNL researchers have developed a way to manage car batteries of different types and sizes as energy storage for the power grid. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

When aging vehicle batteries lack the juice to power your car anymore, they may still hold energy. Yet it’s tough to find new uses for lithium-ion batteries with different makers, ages and sizes. A solution is urgently needed because battery recycling options are scarce.

Researchers at ORNL designed a recyclable carbon fiber material to promote low-carbon manufacturing. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists designed a recyclable polymer for carbon-fiber composites to enable circular manufacturing of parts that boost energy efficiency in automotive, wind power and aerospace applications.

The AI-driven HyperCT platform has three primary points of articulation that can rotate a sample in almost any direction, eliminating the need for human intervention and significantly reducing lengthy experiment times. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers are developing a first-of-its-kind artificial intelligence device for neutron scattering called Hyperspectral Computed Tomography, or HyperCT.

The ORNL researchers’ findings may enable better detection of uranium tetrafluoride hydrate, a little-studied byproduct of the nuclear fuel cycle, and better understanding of how environmental conditions influence the chemical behavior of fuel cycle materials. Credit: Kevin Pastoor/Colorado School of Mines

ORNL researchers used the nation’s fastest supercomputer to map the molecular vibrations of an important but little-studied uranium compound produced during the nuclear fuel cycle for results that could lead to a cleaner, safer world.

Earth Day

Tackling the climate crisis and achieving an equitable clean energy future are among the biggest challenges of our time. 

As part of the Next-Generation Ecosystem Experiments Arctic project, scientists are gathering and incorporating new data about the Alaskan tundra into global models that predict the future of our planet. Credit: ORNL/U.S. Dept. of Energy

Improved data, models and analyses from ORNL scientists and many other researchers in the latest global climate assessment report provide new levels of certainty about what the future holds for the planet