Skip to main content
3D printed “Frankenstein design” collimator show the “scars” where the individual parts are joined

Scientists at ORNL have developed 3D-printed collimator techniques that can be used to custom design collimators that better filter out noise during different types of neutron scattering experiments

The sun sets behind the ORNL Visitor Center in this aerial photo from April 2023. Credit: Kase Clapp/ORNL, U.S. Dept. of Energy

In fiscal year 2023 — Oct. 1–Sept. 30, 2023 — Oak Ridge National Laboratory was awarded more than $8 million in technology maturation funding through the Department of Energy’s Technology Commercialization Fund, or TCF.

The 25th annual National School on Neutron and X-ray Scattering was held August 6–18. Each year, graduate students visit Oak Ridge and Argonne National Laboratories to learn how to use neutrons and X-rays to study energy and materials. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

In 2023, the National School on X-ray and Neutron Scattering, or NXS, marked its 25th year during its annual program, held August 6–18 at the Department of Energy’s Oak Ridge and Argonne National Laboratories.   

Researchers at the Department of Energy’s Oak Ridge National Laboratory were the first to use neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry.

Researchers at the Department of Energy’s Oak Ridge National Laboratory were the first to use neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry.

Steven Hamilton. Credit: Genevieve Martin/ORNL.

As renewable sources of energy such as wind and sun power are being increasingly added to the country’s electrical grid, old-fashioned nuclear energy is also being primed for a resurgence.

Image of outerspace

Few things carry the same aura of mystery as dark matter. The name itself radiates secrecy, suggesting something hidden in the shadows of the Universe.

Artist’s conceptual drawing illustrates the novel energy filtering technique using neutrons that enabled researchers at ORNL to freeze moving germanium telluride atoms in an unblurred image. The images offered key insights into how the material produces its outstanding thermoelectric performance. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Scientists have long sought to better understand the “local structure” of materials, meaning the arrangement and activities of the neighboring particles around each atom. In crystals, which are used in electronics and many other applications, most of the atoms form highly ordered lattice patterns that repeat. But not all atoms conform to the pattern.

ORNL physicist Libby Johnson demonstrated a new control panel at ORNL’s Bulk Shielding Facility in 1957. Among the first females to operate a nuclear reactor, Johnson blazed trails for women. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory physicist Elizabeth “Libby” Johnson (1921-1996), one of the world’s first nuclear reactor operators, standardized the field of criticality safety with peers from ORNL and Los Alamos National Laboratory.

Earth Day

Tackling the climate crisis and achieving an equitable clean energy future are among the biggest challenges of our time. 

This image illustrates lattice distortion, strain, and ion distribution in metal halide perovskites, which can be induced by external stimuli such as light and heat. Image credit: Stephen Jesse/ORNL

A study by researchers at the ORNL takes a fresh look at what could become the first step toward a new generation of solar batteries.