Skip to main content
Climate change often comes down to how it affects water, whether it’s for drinking, electricity generation, or how flooding affects people and infrastructure. To better understand these impacts, ORNL water resources engineer Sudershan Gangrade is integrating knowledge ranging from large-scale climate projections to local meteorology and hydrology and using high-performance computing to create a holistic view of the future.

Climate change often comes down to how it affects water, whether it’s for drinking, electricity generation, or how flooding affects people and infrastructure. To better understand these impacts, ORNL water resources engineer Sudershan Gangrade is integrating knowledge ranging from large-scale climate projections to local meteorology and hydrology and using high-performance computing to create a holistic view of the future.

ORNL scientists mutated amino acids in a receptor protein, shown in green, which diminished interaction with the SARS-CoV-2 virus spike protein, shown in red. Mutating the receptor protein hampered the virus’s ability to infect host cells. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists exploring bioenergy plant genetics have made a surprising discovery: a protein domain that could lead to new COVID-19 treatments.

One of the proteins identified through a new ORNL-developed approach could be key to communications between poplar trees and beneficial microbes that can help boost poplar trees’ growth, carbon storage and climate resilience. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

ORNL researchers have identified specific proteins and amino acids that could control bioenergy plants’ ability to identify beneficial microbes that can enhance plant growth and storage of carbon in soils.

The next generation of the Center for Bioenergy Innovation will pursue an accelerated feedstock-to-fuels approach for the efficient, economic production of sustainable jet fuel. Credit: ORNL, U.S. Dept. of Energy

The Center for Bioenergy Innovation has been renewed by the Department of Energy as one of four bioenergy research centers across the nation to advance robust, economical production of plant-based fuels and chemicals.

ORNL’s Adam Guss began adapting the SAGE gene editing tool to modify microbes in graduate school. Today, SAGE is rapidly accelerating the design of custom microbes for a variety of applications. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A DNA editing tool adapted by Oak Ridge National Laboratory scientists makes engineering microbes for everything from bioenergy production to plastics recycling easier and faster.

Fungal geneticist Joanna Tannous is gaining a better understanding of the genetic processes behind fungal life to both combat plant disease and encourage beneficial processes like soil carbon storage. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Joanna Tannous has found the perfect organism to study to satisfy her deeply curious nature, her skills in biochemistry and genetics, and a drive to create solutions for a better world. The organism is a poorly understood life form that greatly influences its environment and is unique enough to deserve its own biological kingdom: fungi.

Students from UC Merced collect water samples at Guadalupe Reservoir in Santa Clara County, California. Credit: UC Merced

Environmental scientists at ORNL have recently expanded collaborations with minority-serving institutions and historically Black colleges and universities across the nation to broaden the experiences and skills of student scientists while bringing fresh insights to the national lab’s missions.

Hydrologist Jesus Gomez-Velez brings his expertise in river systems and mathematics to ORNL’s modeling and simulation research to better understand flow and transport processes in the nation’s watersheds. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Hydrologist Jesús “Chucho” Gomez-Velez is in the right place at the right time with the right tools and colleagues to explain how the smallest processes within river corridors can have a tremendous impact on large-scale ecosystems.

Hybrid poplar trees such as these shown in an ORNL greenhouse were engineered with the REVEILLE1 gene to delay dormancy and produce more biomass. The research was led by the Center for Bioenergy Innovation at ORNL with the Joint Genome Institute, Brookhaven National Laboratory, the HudsonAlpha Institute for Biotechnology, the University of Connecticut and other partners. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

A team of scientists led by ORNL discovered the gene in agave that governs when the plant goes dormant and used it to create poplar trees that nearly doubled in size, increasing biomass yield for biofuels production

Iron content gives a reddish hue to an area of ponded water in the Arctic permafrost. ORNL scientists are exploring the importance of the iron cycle on how greenhouse gases are released from thawing Arctic soils. Credit: David Graham/ORNL, U.S. Dept. of Energy

The interaction of elemental iron with the vast stores of carbon locked away in Arctic soils is key to how greenhouse gases are emitted during thawing and should be included in models used to predict Earth’s climate.