Skip to main content
Daryl Yang standing on a bridge overlooking a pond covered in water lillies

Daryl Yang is coupling his science and engineering expertise to devise new ways to measure significant changes going on in the Arctic, a region that’s warming nearly four times faster than other parts of the planet. The remote sensing technologies and modeling tools he develops and leverages for the Next-Generation Ecosystem Experiments in the Arctic project, or NGEE Arctic, help improve models of the ecosystem to better inform decision-making as the landscape changes.

ORNL intern Jack Orebaugh holds the drone used in his research to help locate human remains. Credit: Lena Shoemaker/ORNL, U.S. Dept. of Energy

Jack Orebaugh, a forensic anthropology major at the University of Tennessee, Knoxville, has a big heart for families with missing loved ones. When someone disappears in an area of dense vegetation, search and recovery efforts can be difficult, especially when a missing person’s last location is unknown. Recognizing the agony of not knowing what happened to a family or friend, Orebaugh decided to use his internship at the Department of Energy’s Oak Ridge National Laboratory to find better ways to search for lost and deceased people using cameras and drones. 

ORNL researchers are establishing a digital thread of data, algorithms and workflows to produce a continuously updated model of earth systems.

Digital twins are exactly what they sound like: virtual models of physical reality that continuously update to reflect changes in the real world.

 

A small droplet of water is suspended in midair via an electrostatic levitator that lifts charged particles using an electric field that counteracts gravity. Credit: Iowa State University/ORNL, U.S. Dept. of Energy

How do you get water to float in midair? With a WAND2, of course. But it’s hardly magic. In fact, it’s a scientific device used by scientists to study matter.

Scientists at Oak Ridge National Laboratory contributed to several chapters of the Fifth National Climate Assessment, providing expertise in complex ecosystem processes, energy systems, human dynamics, computational science and Earth-scale modeling. Credit: ORNL, U.S. Dept. of Energy

Scientists at ORNL used their knowledge of complex ecosystem processes, energy systems, human dynamics, computational science and Earth-scale modeling to inform the nation’s latest National Climate Assessment, which draws attention to vulnerabilities and resilience opportunities in every region of the country.

red and green sphagnum moss

A type of peat moss has surprised scientists with its climate resilience: Sphagnum divinum is actively speciating in response to hot, dry conditions. 

 A group of ORNL staff standing in a long corridor with flags hanging from the ceiling

For 25 years, scientists at Oak Ridge National Laboratory have used their broad expertise in human health risk assessment, ecology, radiation protection, toxicology and information management to develop widely used tools and data for the U.S. Environmental Protection Agency as part of the agency’s Superfund program.

Xiaohan Yang is using his expertise in synthetic biology and capabilities like the Advanced Plant Phenotyping Laboratory at Oak Ridge National Laboratory to accelerate the development of drought-tolerant, fast-growing bioenergy crops suited for conversion into clean jet fuels. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Scientist Xiaohan Yang’s research at the Department of Energy’s Oak Ridge National Laboratory focuses on transforming plants to make them better sources of renewable energy and carbon storage.

Yaoping Wang. Credit: Yaoping Wang

Yaoping Wang, postdoctoral research associate at ORNL, has received an Early Career Award from the Asian Ecology Section, or AES, of the Ecological Society of America.

The DEMAND single crystal diffractometer at the High Flux Isotope Reactor, or HFIR, is the latest neutron instrument at the Department of Energy’s Oak Ridge National Laboratory to be equipped with machine learning-assisted software, called ReTIA. Credit: Jeremy Rumsey/ORNL, U.S. Dept. of Energy

Neutron experiments can take days to complete, requiring researchers to work long shifts to monitor progress and make necessary adjustments. But thanks to advances in artificial intelligence and machine learning, experiments can now be done remotely and in half the time.