Skip to main content
ORNL researchers are establishing a digital thread of data, algorithms and workflows to produce a continuously updated model of earth systems.

Digital twins are exactly what they sound like: virtual models of physical reality that continuously update to reflect changes in the real world.

 

: This schematic of tokamak core-pedestal-boundary regions show what will be simulated by an ORNL project applying machine learning to plasma physics modeling. Credit: Giacomin et al., J. Comput. Phys., 463, (2022) 111294, https://doi.org/10.1016/j.jcp.2022.11294

ORNL will lead three new DOE-funded projects designed to bring fusion energy to the grid on a rapid timescale.

HFIR

Creating energy the way the sun and stars do — through nuclear fusion — is one of the grand challenges facing science and technology. What’s easy for the sun and its billions of relatives turns out to be particularly difficult on Earth.

The Fuel Pellet Fueling Laboratory at ORNL is part of a suite of fusion energy R&D capabilities and provides test equipment and related diagnostics for carrying out experiments to develop pellet injectors for plasma fueling applications. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL will team up with six of eight companies that are advancing designs and research and development for fusion power plants with the mission to achieve a pilot-scale demonstration of fusion within a decade.

Each dot represents a Twitterer discussing COVID-19 from April 16 to April 22, 2021. The closer the dots are to the center, the greater the influence. The brighter the color, the stronger the intent. Image credit: ORNL

Using disinformation to create political instability and battlefield confusion dates back millennia. However, today’s disinformation actors use social media to amplify disinformation that users knowingly or, more often, unknowingly perpetuate. Such disinformation spreads quickly, threatening public health and safety. Indeed, the COVID-19 pandemic and recent global elections have given the world a front-row seat to this form of modern warfare.

Logan Sturm, Alvin M. Weinberg Fellow at ORNL, creates a mashup between additive manufacturing and cybersecurity research. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

How an Alvin M. Weinberg Fellow is increasing security for critical infrastructure components

LandScan Global depicts population distribution estimates across the planet. The darker orange and red colors above indicate higher population density. Credit: ORNL, U.S. Dept. of Energy

It’s a simple premise: To truly improve the health, safety, and security of human beings, you must first understand where those individuals are.

The ORNL researchers’ findings may enable better detection of uranium tetrafluoride hydrate, a little-studied byproduct of the nuclear fuel cycle, and better understanding of how environmental conditions influence the chemical behavior of fuel cycle materials. Credit: Kevin Pastoor/Colorado School of Mines

ORNL researchers used the nation’s fastest supercomputer to map the molecular vibrations of an important but little-studied uranium compound produced during the nuclear fuel cycle for results that could lead to a cleaner, safer world.

Earth Day

Tackling the climate crisis and achieving an equitable clean energy future are among the biggest challenges of our time. 

 Using the ASGarD mathematical framework, scientists can model and visualize the electric fields, shown as arrows, circling around magnetic fields that are colorized to represent field magnitude of a fusion plasma. Credit: David Green/ORNL

Combining expertise in physics, applied math and computing, Oak Ridge National Laboratory scientists are expanding the possibilities for simulating electromagnetic fields that underpin phenomena in materials design and telecommunications.