Skip to main content
3D printed “Frankenstein design” collimator show the “scars” where the individual parts are joined

Scientists at ORNL have developed 3D-printed collimator techniques that can be used to custom design collimators that better filter out noise during different types of neutron scattering experiments

A small droplet of water is suspended in midair via an electrostatic levitator that lifts charged particles using an electric field that counteracts gravity. Credit: Iowa State University/ORNL, U.S. Dept. of Energy

How do you get water to float in midair? With a WAND2, of course. But it’s hardly magic. In fact, it’s a scientific device used by scientists to study matter.

Seeing the difference Ac-225 could make to cancer patients made Raina Setzer want to come to ORNL to directly work with the isotope. Credit: Allison Peacock/ORNL, U.S. Dept. of Energy

Raina Setzer knows the work she does matters. That’s because she’s already seen it from the other side. Setzer, a radiochemical processing technician in Oak Ridge National Laboratory’s Isotope Processing and Manufacturing Division, joined the lab in June 2023.

The sun sets behind the ORNL Visitor Center in this aerial photo from April 2023. Credit: Kase Clapp/ORNL, U.S. Dept. of Energy

In fiscal year 2023 — Oct. 1–Sept. 30, 2023 — Oak Ridge National Laboratory was awarded more than $8 million in technology maturation funding through the Department of Energy’s Technology Commercialization Fund, or TCF.

Chathuddasie Amarasinghe explains her research poster, “Using Microfluidic Mother Machine Devices to Study the Correlated Dynamics of Ribosomes and Chromosomes in Escherichia Coli.” Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Speakers, scientific workshops, speed networking, a student poster showcase and more energized the Annual User Meeting of the Department of Energy’s Center for Nanophase Materials Sciences, or CNMS, Aug. 7-10, near Market Square in downtown Knoxville, Tennessee.

The DEMAND single crystal diffractometer at the High Flux Isotope Reactor, or HFIR, is the latest neutron instrument at the Department of Energy’s Oak Ridge National Laboratory to be equipped with machine learning-assisted software, called ReTIA. Credit: Jeremy Rumsey/ORNL, U.S. Dept. of Energy

Neutron experiments can take days to complete, requiring researchers to work long shifts to monitor progress and make necessary adjustments. But thanks to advances in artificial intelligence and machine learning, experiments can now be done remotely and in half the time.

From left are UWindsor students Isabelle Dib, Dominik Dziura, Stuart Castillo and Maksymilian Dziura at ORNL’s Neutron Spin Echo spectrometer. Their work advances studies on a natural cancer treatment. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

A scientific instrument at ORNL could help create a noninvasive cancer treatment derived from a common tropical plant.

Oak Ridge National Laboratory materials scientist Zhili Feng, left, looks on as senior technician Doug Kyle operates a welding robot inside a robotic welding cell. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

The U.S. Departments of Energy and Defense teamed up to create a series of weld filler materials that could dramatically improve high-strength steel repair in vehicles, bridges and pipelines.

Larry Allard

Larry Allard, a distinguished research staff member at Oak Ridge National Laboratory, has been named a Fellow of the Microanalysis Society.

Oak Ridge National Laboratory researchers used an invertible neural network, a type of artificial intelligence that mimics the human brain, to select the most suitable materials for desired properties, such as flexibility or heat resistance, with high chemical accuracy. The study could lead to more customizable materials design for industry.

A study led by researchers at ORNL could help make materials design as customizable as point-and-click.