Skip to main content
Howard Wilson and Gary Staebler

Two fusion energy leaders have joined ORNL in the Fusion and Fission Energy and Science Directorate, or FFESD.

INFUSE logo

ORNL is leading three research collaborations with fusion industry partners through the Innovation Network for FUSion Energy, or INFUSE, program that will focus on resolving technical challenges and developing innovative solutions to make practical fusion energy a reality.  

: This schematic of tokamak core-pedestal-boundary regions show what will be simulated by an ORNL project applying machine learning to plasma physics modeling. Credit: Giacomin et al., J. Comput. Phys., 463, (2022) 111294, https://doi.org/10.1016/j.jcp.2022.11294

ORNL will lead three new DOE-funded projects designed to bring fusion energy to the grid on a rapid timescale.

AIRES 4 attendees hailing from seven national laboratories and from academia met to discuss robust engineering for digital twins. Credit: Pradeep Ramuhalli/ORNL, U.S. Dept. of Energy

ORNL hosted its fourth Artificial Intelligence for Robust Engineering and Science, or AIRES, workshop from April 18-20. Over 100 attendees from government, academia and industry convened to identify research challenges and investment areas, carving the future of the discipline.

Phil Snyder

When virtually unlimited energy from fusion becomes a reality on Earth, Phil Snyder and his team will have had a hand in making it happen.

This newly manufactured fixed guide vane of a hydropower turbine system was printed at the DOE Manufacturing Demonstration Facility at ORNL. Credit: Genevieve Martin/ORNL, U.S Dept. of Energy

A new report published by ORNL assessed how advanced manufacturing and materials, such as 3D printing and novel component coatings, could offer solutions to modernize the existing fleet and design new approaches to hydropower.

 Leadership from Oak Ridge National Laboratory and the National Energy Technology Laboratory signed a memorandum of understanding to jointly explore carbon management strategies in the Appalachian region. Credit: NETL, U.S. Dept. of Energy

ORNL is teaming with the National Energy Technology Laboratory to jointly explore a range of technology innovations for carbon management and strategies for economic development and sustainable energy transitions in the Appalachian region.

ORNL’s David McCollum, pictured at the entrance to COP27 in Sharm El-Sheikh Egypt, was one of more than 35,000 attendees at the annual United Nations Framework Convention on Climate Change. Credit: David McCollum

David McCollum, a senior scientist at the ORNL and lead for the lab’s contributions to the Net Zero World Initiative, was one of more than 35,000 attendees in Egypt at the November 2022 Sharm El-Sheikh United Nations Framework Convention on Climate Change, or UNFCCC, Conference of the Parties, also known as COP27.

From left to right, Cortney Piper, executive director of the Tennessee Advanced Energy Business Council; Susan Hubbard, ORNL deputy for science and technology; Dan Miller, innovation Crossroads program lead; and Mike Paulus, ORNL director of technology transfer, attend the Innovation Crossroads Showcase at the Knoxville Chamber on Sept. 22. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A crowd of investors and supporters turned out for last week’s Innovation Crossroads Showcase at the Knoxville Chamber as part of Innov865 Week. Sponsored by ORNL and the Tennessee Advanced Energy Business Council, the event celebrated deep-tech entrepreneurs and the Oak Ridge Corridor as a growing energy innovation hub for the nation.

ORNL fusion technology scientist Tim Bigelow, right, stands near the control console in ORNL’s  fusion control room with Matt Houde of Quaise Energy. Their partnership aims to tackle technical challenges with the Millimeter Wave Drilling System that Quaise has developed. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

Researchers in the geothermal energy industry are joining forces with fusion experts at ORNL to repurpose gyrotron technology, a tool used in fusion. Gyrotrons produce high-powered microwaves to heat up fusion plasmas.