Skip to main content
The ORNL DAAC gathers, processes, archives and distributes information on key land processes, including the shifting ecological and geomorphological features of the U.S. Atchafalaya and Terrebonne basins gathered by the NASA Delta-X mission shown here. Credit: NASA Delta-X

In 1993 as data managers at ORNL began compiling observations from field experiments for the National Aeronautics and Space Administration, the information fit on compact discs and was mailed to users along with printed manuals.

Members of the Analytics and AI Methods at Scale group in the National Center for Computational Sciences at ORNL developed the mixed-precision performance benchmarking tool OpenMxP. From left are group leader Feiyi Wang, technical lead Mike Matheson and research scientist Hao Lu. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

As Frontier, the world’s first exascale supercomputer, was being assembled at the Oak Ridge Leadership Computing Facility in 2021, understanding its performance on mixed-precision calculations remained a difficult prospect.

Director of ORNL’s AI Initiative Prasanna Balaprakash addresses attendees at the Generative AI for ORNL Science Workshop. Credit: ORNL, U.S. Dept. of Energy

The Department of Energy’s Oak Ridge National Laboratory hosted its Smoky Mountains Computational Science and Engineering Conference for the first time in person since the COVID pandemic broke in 2020. The conference, which celebrated its 20th consecutive year, took place at the Crowne Plaza Hotel in downtown Knoxville, Tenn., in late August.

Bob Bolton has spent much of his career studying environmental change in Alaska. He recently moved to East Tennessee to join the ORNL-led NGEE Arctic project as deputy for operations. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Bob Bolton may have moved to a southerly latitude at ORNL, but he is still stewarding scientific exploration in the Arctic, along with a project that helps amplify the voices of Alaskans who reside in a landscape on the front lines of climate change.

Steven Hamilton, an R&D scientist in the HPC Methods for Nuclear Applications group at ORNL, leads the ExaSMR project. ExaSMR was developed to run on the Oak Ridge Leadership Computing Facility’s exascale-class supercomputer, Frontier. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

The Exascale Small Modular Reactor effort, or ExaSMR, is a software stack developed over seven years under the Department of Energy’s Exascale Computing Project to produce the highest-resolution simulations of nuclear reactor systems to date. Now, ExaSMR has been nominated for a 2023 Gordon Bell Prize by the Association for Computing Machinery and is one of six finalists for the annual award, which honors outstanding achievements in high-performance computing from a variety of scientific domains.  

A rendering of the CFM RISE program’s open fan architecture. (bottom) A GE visualization of turbulent flow in the tip region of an open fan blade using the Frontier supercomputer at ORNL. Credit: CFM, GE Research (CFM is a 50­–50 joint company between GE and Safran Aircraft Engines)

Outside the high-performance computing, or HPC, community, exascale may seem more like fodder for science fiction than a powerful tool for scientific research. Yet, when seen through the lens of real-world applications, exascale computing goes from ethereal concept to tangible reality with exceptional benefits.

Madhavi Martin portrait image

Madhavi Martin brings a physicist’s tools and perspective to biological and environmental research at the Department of Energy’s Oak Ridge National Laboratory, supporting advances in bioenergy, soil carbon storage and environmental monitoring, and even helping solve a murder mystery.

Clouds of gray smoke in the lower left are funneled northward from wildfires in Western Canada, reaching the edge of the sea ice covering the Arctic Ocean. A second path of thick smoke is visible at the top center of the image, emanating from wildfires in the boreal areas of Russia’s Far East, in this image captured on July 13, 2023. Credit: NASA MODIS

Wildfires have shaped the environment for millennia, but they are increasing in frequency, range and intensity in response to a hotter climate. The phenomenon is being incorporated into high-resolution simulations of the Earth’s climate by scientists at the Department of Energy’s Oak Ridge National Laboratory, with a mission to better understand and predict environmental change.

This map illustrates the natural climate variability that affects the cold-season climate of the Central Southwest Asian region. Credit: Moetasim Ashfaq/ORNL

As extreme weather devastates communities worldwide, scientists are using modeling and simulation to understand how climate change impacts the frequency and intensity of these events. Although long-term climate projections and models are important, they are less helpful for short-term prediction of extreme weather that may rapidly displace thousands of people or require emergency aid.

Reuben Budiardja, an Oak Ridge National Laboratory computational scientist, worked with the early users who helped prepare Frontier, the world’s first exascale supercomputer, for scientific operations. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

With the world’s first exascale supercomputer now fully open for scientific business, researchers can thank the early users who helped get the machine up to speed.