Skip to main content
Chathuddasie Amarasinghe explains her research poster, “Using Microfluidic Mother Machine Devices to Study the Correlated Dynamics of Ribosomes and Chromosomes in Escherichia Coli.” Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Speakers, scientific workshops, speed networking, a student poster showcase and more energized the Annual User Meeting of the Department of Energy’s Center for Nanophase Materials Sciences, or CNMS, Aug. 7-10, near Market Square in downtown Knoxville, Tennessee.

The DEMAND single crystal diffractometer at the High Flux Isotope Reactor, or HFIR, is the latest neutron instrument at the Department of Energy’s Oak Ridge National Laboratory to be equipped with machine learning-assisted software, called ReTIA. Credit: Jeremy Rumsey/ORNL, U.S. Dept. of Energy

Neutron experiments can take days to complete, requiring researchers to work long shifts to monitor progress and make necessary adjustments. But thanks to advances in artificial intelligence and machine learning, experiments can now be done remotely and in half the time.

AIRES 4 attendees hailing from seven national laboratories and from academia met to discuss robust engineering for digital twins. Credit: Pradeep Ramuhalli/ORNL, U.S. Dept. of Energy

ORNL hosted its fourth Artificial Intelligence for Robust Engineering and Science, or AIRES, workshop from April 18-20. Over 100 attendees from government, academia and industry convened to identify research challenges and investment areas, carving the future of the discipline.

The DuAlumin-3D research team developed a lightweight, aluminum alloy for additive manufacturing. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

Dean Pierce of ORNL and a research team led by ORNL’s Alex Plotkowski were honored by DOE’s Vehicle Technologies Office for development of novel high-performance alloys that can withstand extreme environments.

Clouds of gray smoke in the lower left are funneled northward from wildfires in Western Canada, reaching the edge of the sea ice covering the Arctic Ocean. A second path of thick smoke is visible at the top center of the image, emanating from wildfires in the boreal areas of Russia’s Far East, in this image captured on July 13, 2023. Credit: NASA MODIS

Wildfires have shaped the environment for millennia, but they are increasing in frequency, range and intensity in response to a hotter climate. The phenomenon is being incorporated into high-resolution simulations of the Earth’s climate by scientists at the Department of Energy’s Oak Ridge National Laboratory, with a mission to better understand and predict environmental change.

CFM’s RISE open fan engine architecture. Image: GE Aerospace

To support the development of a revolutionary new open fan engine architecture for the future of flight, GE Aerospace has run simulations using the world’s fastest supercomputer capable of crunching data in excess of exascale speed, or more than a quintillion calculations per second.

ORNL researchers have developed a new pressing method, shown as blue circle on right, that produces a more uniform solid electrolyte than the traditionally processed material with more voids, shown as gray circle on left. The material can be integrated into a battery system, center, for improved stability and rate performance. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

ORNL scientists found that a small tweak created big performance improvements in a type of solid-state battery, a technology considered vital to broader electric vehicle adoption.

A study led by ORNL researchers examines the causes behind ordering of cations, the positive ions that help make double perovskite oxides look promising as an energy source. Credit: Getty Images

A study led by researchers at ORNL could uncover new ways to produce more powerful, longer-lasting batteries and memory devices.

Artificial intelligence is becoming an increasingly valuable tool for ORNL researchers tackling the many mysteries of cancer. Credit: Getty Images.

A team of researchers from ORNL was recognized by the National Cancer Institute in March for their unique contributions in the fight against cancer.

A team of ORNL researchers used neutron diffraction experiments to study the 3D-printed ACMZ alloy and observed a phenomenon called “load shuffling” that could inform the design of stronger, better-performing lightweight materials for vehicles. Credit: ORNL, U.S. Dept. of Energy

ORNL researchers have identified a mechanism in a 3D-printed alloy – termed “load shuffling” — that could enable the design of better-performing lightweight materials for vehicles.