Skip to main content
Experts at the Manufacturing Demonstration Facility worked with Magotteaux-Pulaski to develop a more durable composition and new 3D-printing process for abrasion-resistant materials. Credit: Magotteaux

For more than 100 years, Magotteaux has provided grinding materials and castings for the mining, cement and aggregates industries. The company, based in Belgium, began its international expansion in 1968. Its second international plant has been a critical part of the Pulaski, Tennessee, economy since 1972.

BioHome 3D sits on the campus of UMaine’s Advanced Structures and Composites Center and is made from bioderived materials that were developed in collaboration with ORNL researchers. Credit: UMaine

On the grounds of the University of Maine’s Advanced Structures and Composites Center sits the nation’s first additively manufactured home made entirely from biobased materials - BioHome3D.

This newly manufactured fixed guide vane of a hydropower turbine system was printed at the DOE Manufacturing Demonstration Facility at ORNL. Credit: Genevieve Martin/ORNL, U.S Dept. of Energy

A new report published by ORNL assessed how advanced manufacturing and materials, such as 3D printing and novel component coatings, could offer solutions to modernize the existing fleet and design new approaches to hydropower.

A team of ORNL researchers used neutron diffraction experiments to study the 3D-printed ACMZ alloy and observed a phenomenon called “load shuffling” that could inform the design of stronger, better-performing lightweight materials for vehicles. Credit: ORNL, U.S. Dept. of Energy

ORNL researchers have identified a mechanism in a 3D-printed alloy – termed “load shuffling” — that could enable the design of better-performing lightweight materials for vehicles.

Researchers found that moderate levels of ash — sometimes found as spheres in biomass — do not significantly affect the mechanical properties of biocomposites made up of corn stover, switchgrass and PLA thermoplastic. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

The presence of minerals called ash in plants makes little difference to the fitness of new naturally derived compound materials designed for additive manufacturing, an Oak Ridge National Laboratory-led team found.

Researchers at ORNL designed a recyclable carbon fiber material to promote low-carbon manufacturing. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists designed a recyclable polymer for carbon-fiber composites to enable circular manufacturing of parts that boost energy efficiency in automotive, wind power and aerospace applications.

Philipe Ambrozio Dias. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Having lived on three continents spanning the world’s four hemispheres, Philipe Ambrozio Dias understands the difficulties of moving to a new place.

A new online tool developed by ORNL researchers, VERIFI, provides an easy to use dashboard for plant managers to track carbon emissions produced by industrial processes. The tool also monitors energy usage and produces trend reports. Credit: ORNL, U.S. Dept. of Energy

Researchers at ORNL have developed an online tool that offers industrial plants an easier way to track and download information about their energy footprint and carbon emissions.

Sophie Voisin, an ORNL software engineer, was part of a team that won a 2014 R&D 100 Award for work on Intelligent Software for a Personalized Modeling of Expert Opinions, Decisions and Errors in Visual Examination Tasks. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Cameras see the world differently than humans. Resolution, equipment, lighting, distance and atmospheric conditions can impact how a person interprets objects on a photo.

Data from different sources are joined on platforms created by ORNL researchers to offer better information for decision makers. Credit: ORNL/Nathan Armistead

When the COVID-19 pandemic stunned the world in 2020, researchers at ORNL wondered how they could extend their support and help