Skip to main content
The transportation and industrial sectors together account for more than 50% of the country’s carbon footprint. Defossilization could help reduce new emissions from these and other difficult-to-electrify segments of the U.S. economy.

Scientists at Oak Ridge National Laboratory and six other Department of Energy national laboratories have developed a United States-based perspective for achieving net-zero carbon emissions. 

The EPA approved the registration and use of a renewable gasoline blendstock developed by Vertimass LLC and Oak Ridge National Laboratory that can significantly reduce vehicle emissions when added to conventional fuels. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

The U.S. Environmental Protection Agency has approved the registration and use of a renewable gasoline blendstock developed by Vertimass LLC and ORNL that can significantly reduce the emissions profile of vehicles when added to conventional fuels. 

ORNL researchers modeled how hurricane cloud cover would affect solar energy generation as a storm followed 10 possible trajectories over the Caribbean and Southern U.S. Credit: Andy Sproles/ ORNL,U.S. Dept. of Energy

ORNL researchers modeled how hurricane cloud cover would affect solar energy generation as a storm followed 10 possible trajectories over the Caribbean and Southern U.S.

ORNL’s Erin Webb is co-leading a new Circular Bioeconomy Systems Convergent Research Initiative focused on advancing production and use of renewable carbon from Tennessee to meet societal needs. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

ORNL’s Erin Webb is co-leading a new Circular Bioeconomy Systems Convergent Research Initiative focused on advancing production and use of renewable carbon from Tennessee to meet societal needs. 

ORNL researcher Brian Williams prepares for a demonstration of a quantum key distribution system. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

An experiment by researchers at the Department of Energy’s Oak Ridge National Laboratory demonstrated advanced quantum-based cybersecurity can be realized in a deployed fiber link. 

A multidirectorate group from ORNL attended AGU23 and came away inspired for the year ahead in geospatial, earth and climate science

ORNL scientists and researchers attended the annual American Geophysical Union meeting and came away inspired for the year ahead in geospatial, earth and climate science. 

Prasad Kandula builds a medium-voltage solid state circuit breaker as part of ORNL’s project to develop medium-voltage power electronics in GRID-C. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Scientists at ORNL are looking for a happy medium to enable the grid of the future, filling a gap between high and low voltages for power electronics technology that underpins the modern U.S. electric grid.

ORNL’s Tomás Rush examines a culture as part of his research into the plant-fungus relationship that can help or hinder ecosystem health. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

New computational framework speeds discovery of fungal metabolites, key to plant health and used in drug therapies and for other uses. 
 

2023 Top Science Achievements at SNS & HFIR

The 2023 top science achievements from HFIR and SNS feature a broad range of materials research published in high impact journals such as Nature and Advanced Materials.

The AI agent, incorporating a language model-based molecular generator and a graph neural network-based molecular property predictor, processes a set of user-provided molecules (green) and produces/suggests new molecules (red) with desired chemical/physical properties (i.e. excitation energy). Image credit: Pilsun You, Jason Smith/ORNL, U.S. DOE

A team of computational scientists at ORNL has generated and released datasets of unprecedented scale that provide the ultraviolet visible spectral properties of over 10 million organic molecules.