Skip to main content
Mali Balasubramanian made a rewarding mid-career shift to focus on studying new battery materials and systems using X-ray spectroscopy and other methods. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Having passed the midpoint of his career, physicist Mali Balasubramanian was part of a tight-knit team at a premier research facility for X-ray spectroscopy. But then another position opened, at ORNL— one that would take him in a new direction.

ORNL researchers encoded grid hardware operating data into a color band hidden inside photographs, video or artwork, as shown in this photo. The visual can then be transmitted to a utility’s control center for decoding. Credit: ORNL/U.S. Dept. of Energy

Inspired by one of the mysteries of human perception, an ORNL researcher invented a new way to hide sensitive electric grid information from cyberattack: within a constantly changing color palette.

Shajjad Chowdhury, an ORNL power electronics researcher, is designing a more compact and power-dense capacitor that will help maximize electric vehicle driving range. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

As a researcher in power electronics, Shajjad Chowdhury is focused on exceeding capacity. In a lab space at the National Transportation Research Center at ORNL, he’s developing a novel capacitor and inverter component that will shrink the size and reduce the cost of electric drive units. He sees this as a potential step to increase electric vehicle adoption in the United States.

BioHome 3D sits on the campus of UMaine’s Advanced Structures and Composites Center and is made from bioderived materials that were developed in collaboration with ORNL researchers. Credit: UMaine

On the grounds of the University of Maine’s Advanced Structures and Composites Center sits the nation’s first additively manufactured home made entirely from biobased materials - BioHome3D.

Image of outerspace

Few things carry the same aura of mystery as dark matter. The name itself radiates secrecy, suggesting something hidden in the shadows of the Universe.

Steven Campbell and Radha Krishna-Moorthy discuss part of the power electronics that make up the Smart Universal Power Electronics Regulator technology developed at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at ORNL are helping modernize power management and enhance reliability in an increasingly complex electric grid.

NASA scientist Andrew Needham used the MARS neutron imaging instrument at Oak Ridge National Laboratory to study moon rock samples brought back from the Apollo missions. Credit: Jeremy Rumsey/ORNL, U.S. Dept. of Energy

How did we get from stardust to where we are today? That’s the question NASA scientist Andrew Needham has pondered his entire career.

ORNL chemist and YO-STEM founder Candice Halbert focuses her professional time operating the Liquids Reflectometer at ORNL’s Spallation Neutron Source. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A chemist from Oak Ridge National Laboratory attracted national attention when her advocacy for science education made People magazine’s annual “Women Changing the World” issue.

ORNL engineer Ahmed Elatar explained his profession to students in Jessica Everitt’s 2nd grade class at Hardin Valley Elementary School in Knoxville, Tennessee, during Engineers Week. Credit: Jessica Everitt

Nine engineers from ORNL visited 10 elementary and middle school classrooms in three school districts during National Engineers Week, Feb. 21 to 24, 2023, describing and demonstrating the excitement of the engineering profession to more than 300 Tennessee students.

Artist’s conceptual drawing illustrates the novel energy filtering technique using neutrons that enabled researchers at ORNL to freeze moving germanium telluride atoms in an unblurred image. The images offered key insights into how the material produces its outstanding thermoelectric performance. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Scientists have long sought to better understand the “local structure” of materials, meaning the arrangement and activities of the neighboring particles around each atom. In crystals, which are used in electronics and many other applications, most of the atoms form highly ordered lattice patterns that repeat. But not all atoms conform to the pattern.