Skip to main content
tourassi_image
Despite steady progress in detection and treatment in recent decades, cancer remains the second leading cause of death in the United States, cutting short the lives of approximately 500,000 people each year. To better understand and combat this disease, medical researcher...
An illustration that demonstrates how THF (orange) and water (blue) phase separate on the surface of cellulose (green), thus facilitating its breakdown. Image credit: Barmak Mostofian
Lignocellulosic biomass—plant matter such as cornstalks, straw, and woody plants—is a sustainable source for production of bio-based fuels and chemicals.
ORNL will lend computational resources such as its Titan supercomputer to support the Cancer Moonshot effort.

The Department of Energy’s Oak Ridge National Laboratory will add its computational know-how to the battle against cancer through several new projects recently announced at the White House Cancer Moonshot Summit. 

OLCF Vimeo Screenshot

While trying to fatten the atom in 1938, German chemist Otto Hahn accidentally split it instead. This surprising discovery put modern science on the fast track to the atomic age and to the realization of technologies with profound potential for great harm or great help. Altho...

The image above shows the chain of the studied calcium isotopes. The “doubly magic” isotopes with mass numbers 40 (Ca-40) and 48 (Ca-48) exhibit equal charge radii. The first measurement of the charge radius in Ca-52 yielded an unexpectedly large result.

For decades nuclear physicists have tried to learn more about which elements, or their various isotopes, are “magic.” This is not to say that they display supernatural powers. Magic atomic nuclei are composed of “magic” numbers of protons and neutrons—collectively called nucleons—such as 2, 8, 20, and 28.

In conventional, low-temperature superconductivity (left), so-called Cooper pairing arises from the presence of an electron Fermi sea. In the pseudogap regime of the cuprate superconductors (right), parts of the Fermi sea are “dried out” and the charge-ca
When physicists Georg Bednorz and K. Alex Muller discovered the first high-temperature superconductors in 1986, it didn’t take much imagination to envision the potential technological benefits of harnessing such materials.
Fernanda Foertter
Fernanda Foertter, a user support specialist at the Department of Energy’s Oak Ridge National Laboratory, considers herself a tinkerer. Foertter’s tinkering started when she was a child, but her innate inquisitiveness still influences her work at the Oak Ridge Leadership Computing...
An illustration of the dopamine transporter in its outward- (left) and inward-opening (right) state. Note that the inward opening has brought about an outward closing and change in the number of water molecules (blue, pink spheres) inside and outside the

In an era of instant communication, perhaps no message-passing system is more underappreciated than the human body. Underlying each movement, each mood, each sight, sound, or smell, an army of specialized cells called neurons relays signals that register in the brain and connect us to our environment.

A simulation of combustion within two adjacent gas turbine combustors. GE researchers are incorporating advanced combustion modeling and simulation into product testing after developing a breakthrough methodology on the OLCF’s Titan supercomputer.

In the United States, the use of natural gas for electricity generation continues to grow. The driving forces behind this development? A boom in domestic natural gas production, historically low prices, and increased scrutiny over fossil fuels’ carbon emissions. Though coal still acco...

Interpreting the results of collision induced dissociation (CID) experiments, simulations on Titan predict the formation of an unusually bonded uranium-nitrosyl molecule. Credit: J. Am. Chem. Society. DOI: 10.1021/jacs.5b02420
Radioactive materials have long been a part of American history—from the Manhattan Project to the development of nuclear power. The materials central to these innovations are actinides, or elements 89–103 on the periodic table that release large amounts of energy when atoms are spli...