Skip to main content
Researchers Melissa Cregger, left, and Xiaohan Yang examine plants in an ORNL greenhouse where biosensors are installed to accelerate plant transformations. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy.

Nature-based solutions are an effective tool to combat climate change triggered by rising carbon emissions, whether it’s by clearing the skies with bio-based aviation fuels or boosting natural carbon sinks.

The yellow breasted chat is one of more than 200 bird species found on the Oak Ridge Reservation. Credit: Lee Smalley

The public is invited to six nature walks designed to highlight not only the rich flora and fauna diversity of the Oak Ridge Reservation, but also to demonstrate the work being done to sustainably manage and conserve this valuable resource.

The next generation of the Center for Bioenergy Innovation will pursue an accelerated feedstock-to-fuels approach for the efficient, economic production of sustainable jet fuel. Credit: ORNL, U.S. Dept. of Energy

The Center for Bioenergy Innovation has been renewed by the Department of Energy as one of four bioenergy research centers across the nation to advance robust, economical production of plant-based fuels and chemicals.

Samantha Peters co-designed and conducted experiments using ORNL’s high-performance mass spectrometry techniques to prove that bacteriophages deploy genetic code-switching to overwhelm and destroy host bacteria. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

Scientists at ORNL have confirmed that bacteria-killing viruses called bacteriophages deploy a sneaky tactic when targeting their hosts: They use a standard genetic code when invading bacteria, then switch to an alternate code at later stages of

Fungal geneticist Joanna Tannous is gaining a better understanding of the genetic processes behind fungal life to both combat plant disease and encourage beneficial processes like soil carbon storage. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Joanna Tannous has found the perfect organism to study to satisfy her deeply curious nature, her skills in biochemistry and genetics, and a drive to create solutions for a better world. The organism is a poorly understood life form that greatly influences its environment and is unique enough to deserve its own biological kingdom: fungi.

Erica Prates is using her skills as a computational systems biologist to link the smallest molecules to their impact on large ecosystems. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Erica Prates has found a way to help speed the pursuit of healthier ecosystems by linking the function of the smallest molecules to their effects on large-scale processes, leveraging a combination of science, math and computing.

Iron content gives a reddish hue to an area of ponded water in the Arctic permafrost. ORNL scientists are exploring the importance of the iron cycle on how greenhouse gases are released from thawing Arctic soils. Credit: David Graham/ORNL, U.S. Dept. of Energy

The interaction of elemental iron with the vast stores of carbon locked away in Arctic soils is key to how greenhouse gases are emitted during thawing and should be included in models used to predict Earth’s climate.

More than 300,000 students, teachers, and families across the country have been engaged in learning about what bioenergy can do to reduce carbon emissions and provide good jobs through a collaborative approach to science outreach adopted by the Center for Bioenergy Innovation (CBI) at Oak Ridge National Laboratory. Credit: Wayne Robinson

More than 300,000 students, teachers and families across the country have been engaged in learning about what bioenergy can do to reduce carbon emissions and provide good jobs as the result of a collaborative approach to science outreach adopted by the Center for Bioenergy Innovation at ORNL.

Jack Cahill of ORNL’s Biosciences Division is developing new techniques to view and measure the previously unseen to better understand important chemical processes at play in plant-microbe interactions and in human health. In this photo, Cahill is positioning a rhizosphere-on-a-chip platform for imaging by mass spectrometry. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

John “Jack” Cahill is out to illuminate previously unseen processes with new technology, advancing our understanding of how chemicals interact to influence complex systems whether it’s in the human body or in the world beneath our feet.

Matthew Craig’s research at ORNL is focused on how carbon cycles in and out of soils, a process that can have tremendous impact on the Earth’s climate. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Matthew Craig grew up eagerly exploring the forest patches and knee-high waterfalls just beyond his backyard in central Illinois’ corn belt. Today, that natural curiosity and the expertise he’s cultivated in biogeochemistry and ecology are focused on how carbon cycles in and out of soils, a process that can have tremendous impact on the Earth’s climate.