Skip to main content
Using a better modeling framework, with data collected from Mississippi Delta marshes, scientists are able to improve the predictions of methane and other greenhouse gas emissions. Credit: Matthew Berens/ORNL, U.S Dept. of Energy

Scientists at the Department of Energy’s Oak Ridge National Laboratory are using a new modeling framework in conjunction with data collected from marshes in the Mississippi Delta to improve predictions of climate-warming methane and nitrous oxide.

ORNL’s Tomás Rush examines a culture as part of his research into the plant-fungus relationship that can help or hinder ecosystem health. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

New computational framework speeds discovery of fungal metabolites, key to plant health and used in drug therapies and for other uses. 
 

Prasanna Balaprakash, who leads ORNL’s AI Initiative, participated in events hosted by the White House Office of Science and Technology Policy and the Task Force on American Innovation to discuss the challenges and opportunities posed by AI. Credit: Brian Mosley/Computing Research Association

In summer 2023, ORNL's Prasanna Balaprakash was invited to speak at a roundtable discussion focused on the importance of academic artificial intelligence research and development hosted by the White House Office of Science and Technology Policy and the U.S. National Science Foundation.

2023 Top Science Achievements at SNS & HFIR

The 2023 top science achievements from HFIR and SNS feature a broad range of materials research published in high impact journals such as Nature and Advanced Materials.

Pictured is Venugopal Koikal Varma, group leader for ORNL’s Remote Systems group. ORNL, U.S. Dept. of Energy

ORNL will lead a new DOE-funded project designed to accelerate bringing fusion energy to the grid. The Accelerate award focuses on developing a fusion power plant design concept that supports remote maintenance and repair methods for the plasma-facing components in fusion power plants.

Howard Wilson and Gary Staebler

Two fusion energy leaders have joined ORNL in the Fusion and Fission Energy and Science Directorate, or FFESD.

Frontier’s exascale power enables the Simple Cloud-Resolving E3SM Atmosphere Model to run years’ worth of climate simulations at unprecedented speed and scale. Credit: Ben Hillman/Sandia National Laboratories, U.S. Dept. of Energy

A 19-member team of scientists from across the national laboratory complex won the Association for Computing Machinery’s 2023 Gordon Bell Special Prize for Climate Modeling for developing a model that uses the world’s first exascale supercomputer to simulate decades’ worth of cloud formations.

A Univ. of Michigan-led team used Frontier, the world’s first exascale supercomputer, to simulate a system of nearly 75,000 magnesium atoms at near-quantum accuracy. Credit: SC23

 

A team of eight scientists won the Association for Computing Machinery’s 2023 Gordon Bell Prize for their study that used the world’s first exascale supercomputer to run one of the largest simulations of an alloy ever and achieve near-quantum accuracy.

INFUSE logo

ORNL is leading three research collaborations with fusion industry partners through the Innovation Network for FUSion Energy, or INFUSE, program that will focus on resolving technical challenges and developing innovative solutions to make practical fusion energy a reality.  

Sangkeun “Matt” Lee received the Best Poster Award at the Institute of Electrical and Electronics Engineers 24th International Conference on Information Reuse and Integration.

Lee's paper at the August conference in Bellevue, Washington, combined weather and power outage data for three states – Texas, Michigan and Hawaii –  and used a machine learning model to predict how extreme weather such as thunderstorms, floods and tornadoes would affect local power grids and to estimate the risk for outages. The paper relied on data from the National Weather Service and the U.S. Department of Energy’s Environment for Analysis of Geo-Located Energy Information, or EAGLE-I, database.