Skip to main content
This graphic shows an unconventional approach to making widely used composite materials stronger and tougher. Thermoplastic fibers are deposited like cobwebs on top of rigid fibers to chemically form a supportive network with a surrounding matrix, or binder substance. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Scientists at ORNL have developed a method that demonstrates how fiber-reinforced polymer composite materials used in the automotive, aerospace and renewable energy industries can be made stronger and tougher to better withstand mechanical or structural stresses over time.

Researchers relied on support from ORNL’s Quantum Computing User Program to simulate a key quantum state at one of the largest scales reported. The findings could mark a step toward improving quantum simulations.  Credit: Getty Images

Researchers simulated a key quantum state at one of the largest scales reported, with support from the Quantum Computing User Program, or QCUP, at ORNL. 

ORNL researchers to present wireless charging technology in OTT’s Discovery Series webinar

ORNL’s Omer Onar and Mostak Mohammad will present on ORNL's wireless charging technology in DOE’s Office of Technology Transitions National Lab Discovery Series Tuesday, April 30. 

 

 

ORNL’s Erin Webb is co-leading a new Circular Bioeconomy Systems Convergent Research Initiative focused on advancing production and use of renewable carbon from Tennessee to meet societal needs. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

ORNL’s Erin Webb is co-leading a new Circular Bioeconomy Systems Convergent Research Initiative focused on advancing production and use of renewable carbon from Tennessee to meet societal needs. 

3D printed “Frankenstein design” collimator show the “scars” where the individual parts are joined

Scientists at ORNL have developed 3D-printed collimator techniques that can be used to custom design collimators that better filter out noise during different types of neutron scattering experiments

ORNL researchers achieved the highest wireless power transfer level for a light-duty passenger vehicle when the team demonstrated a 100-kW wireless power transfer to an EV using ORNL’s patented polyphase electromagnetic coupling coil. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

A team of researchers at ORNL demonstrated that a light-duty passenger electric vehicle can be wirelessly charged at 100-kW with 96% efficiency using polyphase electromagnetic coupling coils with rotating magnetic fields.

Applications for the U.S. Quantum Information Science Summer School are open until March 15, 2024. Credit: Laddy Fields/ORNL, U.S. Dept. of Energy

From July 15 to 26, 2024, the Department of Energy’s Oak Ridge National Laboratory will host the second U.S. Quantum Information Science, or QIS, Summer School.

ORNL’s Tomás Rush examines a culture as part of his research into the plant-fungus relationship that can help or hinder ecosystem health. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

New computational framework speeds discovery of fungal metabolites, key to plant health and used in drug therapies and for other uses. 
 

ORNL’s Nagi Rao discusses the lab’s deployed “dark fiber” testbed for quantum networking at SC23 in Denver, Colorado. Credit: Mariam Kiran/ORNL, U.S. Dept. of Energy

ORNL’s successes in QIS and its forward-looking strategy were recently recognized in the form of three funding awards that will help ensure the laboratory remains a leader in advancing quantum computers and networks.

Caption: Jaswinder Sharma makes battery coin cells with a lightweight current collector made of thin layers of aligned carbon fibers in a polymer with carbon nanotubes. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Electric vehicles can drive longer distances if their lithium-ion batteries deliver more energy in a lighter package. A prime weight-loss candidate is the current collector, a component that often adds 10% to the weight of a battery cell without contributing energy.